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Abstract
Random copolymers are polymers with two or more types of monomer
where the monomer sequence is determined by some random process. Once
determined, the sequence is fixed so random copolymers are an example of
a system with quenched randomness. We review the statistical mechanics of
random copolymers, focusing on self-avoiding walk models where there are
two types of monomers, A and B, which are randomly distributed along the
polymer chain. Theoretical, approximate and numerical results are reviewed for
models of the random copolymer adsorption, localization and collapse phase
transitions. We concentrate on what is known about the existence of phase
transitions, the Morita approximation, and results about self-averaging. We also
discuss, in less detail, the replica trick and numerical methods including Monte
Carlo methods, exact enumeration and transfer-matrix methods. Important
open problems are identified throughout and highlighted in the conclusions.

PACS numbers: 05.50.+q, 05.70.Fh, 61.25.Hq, 64.60.Cn, 82.35.Gh, 82.35.Jk

1. Introduction

Random copolymers are an important example of quenched randomness. Consider a linear
polymer with k types of comonomers, A1, . . . , Ak , and with the monomers making up the
polymer numbered sequentially i = 1, . . . , n along the polymer chain. In the random case
this sequence of monomers is determined by a random process. We can write χ1, . . . , χn for
the sequence of monomers, where χi ∈ {A1, . . . , Ak}. We shall often write χ as a shorthand
for χ1, . . . , χn. In the simplest case, the χi are independent random variables chosen from the
same distribution. This is the situation which has received most attention but other cases, e.g.
when the sequence is determined by a Markov process, are interesting and present their own
challenges. The conformations of the polymer are independent of the monomer sequence but
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the energy associated with a conformation depends on the sequence, so the relative probabilities
of different conformations also depend on the sequence.

The sequence of monomers is determined by a random process but, once determined,
it is then fixed. One can think of the monomer sequence being determined in or by the
polymerization process. The sequence cannot then be changed without some chemical reaction
occurring. In a typical situation different polymer molecules in the system (e.g. in solution
or in a melt) will have different sequences of monomers and, in principle, the properties of
an individual polymer molecule will depend on its monomer sequence. They might also
depend on the sequences of monomers in other polymer molecules in the system. In order
to determine the physical properties of the system an average must be taken over possible
monomer sequences.

We shall restrict ourselves to the case of an infinitely dilute solution where the properties
of an individual polymer molecule are not affected by its neighbours. For a finite degree of
polymerization (i.e. the number of monomers, n < ∞) there will be a distribution of values
of properties of the molecules, depending on the monomer sequence. For some particular
property P its value will depend on both the degree of polymerization (n) and on the monomer
sequence (χ ), and we write this as Pn(χ). In certain circumstances Pn(χ) converges to
a deterministic value (independent of χ for almost all χ ) as n goes to infinity. In this
case we say that the property P self-averages. We shall return to this kind of question in
section 5.

Given a model for the conformational properties of the polymer (e.g. a self-avoiding
walk) and a random process for choosing the sequence of monomers (i.e. for labelling or
colouring the vertices of the walk), we can use this model to investigate several phenomena
in random copolymers. We shall look at three physical situations: adsorption of a copolymer
at a surface, localization of a copolymer at an interface between two immiscible liquids and
collapse of a copolymer from a coil to a ball as the temperature is lowered or the solvent
quality decreases. For each of these cases we can define a partition function which depends
on the degree of polymerization (n), a parameter (β, say) which plays the role of reciprocal
temperature, the monomer sequence (χ ), the set of allowed conformations for the polymer
(�n) and a Hamiltonian (H(ω|χ)) defined, given χ , for each ω ∈ �n. If we write this partition
function as Zn(β|χ) then we can define the intensive free energy at fixed χ as

κn(β|χ) = n−1 log Zn(β|χ) = n−1 log
∑
ω∈�n

e−βH(ω|χ). (1.1)

The observed value of the free energy will be the average of this over all χ [14, 79]. This
is called the quenched average free energy, 〈κn(β|χ)〉, where the angular brackets denote
the expectation over the distribution, π , of monomer sequences. A central question is the
existence of the limit κ̄(β) = limn→∞〈κn(β|χ)〉. This quantity, when it exists, is called the
limiting quenched average free energy.

We shall focus primarily on lattice models, including random walks, directed walks and
self-avoiding walks. Even for simple models it is remarkably difficult to derive detailed
properties of the limiting quenched average free energy. A simple approximation is to reverse
the order of the average and the logarithm, giving the annealed free energy n−1 log〈Zn(β|χ)〉
which is relatively easy to compute for several models. It is easy to show that the quenched
average free energy is bounded above by the annealed free energy but the bound may be quite
weak. There is an improved bound due to Morita [87] which will be described later. We shall
also describe the replica trick (which is a very useful way of handling quenched averages)
and several numerical approaches, such as Monte Carlo methods and exact enumeration and
series analysis, which have been used to investigate the properties of random copolymers.
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Other approximation methods and other numerical techniques will receive no more than a
brief mention.

The field of random copolymers is very broad and we make no attempt at an exhaustive
coverage. In particular we say nothing about dynamics and only touch on the extensive
field of polyelectrolytes. Although we recognise the potential connection between random
copolymers and biopolymers such as DNA, RNA and proteins [6, 30, 107], we shall say very
little about phenomena such as protein folding [67].

A related problem, which we shall not address, is the statistical mechanics of periodic
copolymers, i.e. copolymers in which the sequence of monomers is periodic rather than
random. See for instance [37, 57, 108, 127].

2. Physical problems and models

In order to carry out any detailed calculation we need a model for the conformational properties
of the polymer molecules. In dilute solution in a good solvent the standard lattice model is
a self-avoiding walk [72]. Consider the square lattice Z

2 with vertices at the integer points
in R

2 and edges joining pairs of vertices which are unit distance apart. A self-avoiding walk
is a sequence of vertices r0, r1, . . . rn and the sequence of edges incident on r0 and r1, r1 and
r2, . . . , rn−1 and rn such that

(i) vertices i and i + 1, i = 0, 1, . . . , n − 1, are unit distance apart (so that they are joined by
an edge of the lattice)

(ii) all vertices are distinct, i.e. no vertex of the lattice is revisited in the walk.

If the walk starts at the origin (for definiteness), we can write cn for the number of distinct
n-edge self-avoiding walks, and it is clear that c1 = 4, c2 = 12 and c3 = 36. At the fourth
step we have to take account of walks which can form a unit square at their fourth step (by
returning to the origin) so c4 = 3c3 − 8 = 100. At five steps we have to take account of
tadpoles with a head of size 4 and a tail of size 1, and at six steps we have to take account of
tadpoles with a head of size 4 and a tail of size 2 as well as walks which return to the origin for
the first time at the sixth step. This gives c5 = 3c4 − 16 = 284 and c6 = 780. On the simple
cubic lattice Z

3, similar arguments give c1 = 6, c2 = 30, c3 = 150, c4 = 5 × 150 − 24 = 726
and c5 = 5 × 726 − 96 = 3534. Counting self-avoiding walks rapidly becomes difficult as n
increases though the values of cn are known exactly to surprisingly large values of n. See for
instance [21, 71]. One can get bounds on the numbers of walks for arbitrary n by counting
subsets and supersets. Clearly the set of walks which do not have an immediate reverse step
includes all self-avoiding walks so cn � 4 × 3n−1. Similarly, walks which can only go in
north and east directions at each step are all self-avoiding so cn � 2n. An old result due to
Hammersley [41] is the existence of the limit limn→∞ n−1 log cn ≡ κ and this coupled with
the bounds given above gives log 2 � κ � log 3. It is not difficult to improve these bounds
somewhat and the numerical value of κ is known to high accuracy from numerical work. κ is
called the connective constant and its value is different on different lattices. On the hexagonal
or honeycomb lattice (the 1-skeleton of the {6, 3} regular tesselation of the plane) it is believed

that κ = log
√

2 +
√

2 [90, 91]. For the other common lattices good numerical estimates are
available [21, 60, 61, 71]. Some of these come directly from enumeration of self-avoiding
walks and some, especially in two dimensions, from longer series for polygons, which have
the same rate of exponential growth as self-avoiding walks [42]. We shall often be concerned
with the d-dimensional hypercubic lattice Z

d and we shall write κd for the corresponding
connective constant.
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Self-avoiding walks are known to be good models of polymers in dilute solution in good
solvents. In these circumstances the properties are dominated by entropic considerations.
At lower temperatures, or when the solvent becomes worse, the model can be decorated by
adding energy terms, e.g. between the vertices of the walk. Similarly, to model phenomena
like polymer adsorption at a surface, additional vertex-surface energy terms can be added
[22, 43, 46].

Although self-avoiding walks are easily defined we know rather little about them and it
is often convenient to consider simpler sets of walks. Sometimes the simpler walk models
can be solved exactly and yield bounds on some properties of the self-avoiding walk model.
Even when this does not hold, the qualitative behaviour of the simpler models can give insight
into the possible behaviour of the self-avoiding walk model. One simplification is to consider
self-avoiding walks on a lattice subset, such as a slit or slab of the lattice [64]. These problems
can sometimes be handled exactly by transfer-matrix methods and can give bounds on some
properties of the full lattice model (see section 4.1.3 for further details).

Random walks are a superset of self-avoiding walks and random walk models can often be
solved exactly. For instance they have been used to study localization of random copolymers at
an interface (see section 2.2). Another useful simplification comes from adding a directedness
constraint [57]. As an example, consider self-avoiding walks on the square lattice with the
added restriction that the walk cannot take a step in the west direction. We shall call these
partially directed walks. It is easy to derive a recurrence for the number of these walks, bn,
with n edges. The first step must be in an east or north or south direction. If the first step is
east the walk can be completed in bn−1 ways. If the first step is north, the second can be north
or east. If it is east, the walk can be completed in bn−2 ways, and so on. This gives

bn = bn−1 + 2[bn−2 + bn−3 + · · ·]. (2.1)

Rewriting this equation with n replaced by n + 1 and subtracting the two equations gives

bn+1 − 2bn − bn−1 = 0 (2.2)

and this can be solved to give

bn = (1 +
√

2)n+1 + (1 − √
2)n+1

2
. (2.3)

Hence limn→∞ n−1 log bn = log(1 +
√

2). One can add geometrical restrictions (e.g. the walk
can be confined to start at the origin and then be confined to be in or on one side of the line
y = 0, see for instance [29, 102, 127]) and energy terms can be added to model the collapse
transition (see for instance [12, 29, 56, 103]). An even simpler model which has been used in
modelling adsorption phenomena [55, 57, 96] is a Dyck path [57]. A Dyck path is a walk in
two dimensions which

(i) starts at the origin and ends on the line y = 0,
(ii) has no vertices with negative y-coordinate, and

(iii) has steps (of length
√

2) only in the directions (1, 1) and (1,−1).

A slightly more complicated model which has also been used is a Motzkin path. This differs
from a Dyck path by having three kinds of steps, (1, 1), (1,−1) and (1, 0).

If we write dn for the number of Dyck paths with n steps (taking d0 = 1) and define the
generating function

D(z) =
∑

n

dnz
n (2.4)
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then we can derive a relation for D(z) by factoring the Dyck path at its first return to the y-axis
as follows.

D(z)
D(z) D(z)+=

This gives

D(z) = 1 + z2D(z)2 (2.5)

which implies that

D(z) = 1 − √
1 − 4z2

2z2
. (2.6)

The generating function has a square root singularity at z = 1/2 which says that the number
of Dyck paths increases as n−3/22n for large even n. Motzkin paths can be treated similarly.
If we write M(z) for the generating function of the number of Motzkin paths then we have a
similar factorization

M(z) = [1 + z + z2 + · · ·] [1 + z2M(z)2]

= 1

1 − z
+

1

1 − z
z2M(z)2 (2.7)

from which we immediately obtain

M(z) = 1 − z − √
1 − 2z − 3z2

2z2
(2.8)

which has a square root singularity at z = 1/3.
In modelling the localization of a polymer at an interface between two immiscible liquids,

one needs a model in which the walk can cross the interface. One simple model which has
been used is bilateral Dyck paths [96]. These are walks in two dimensions with steps (of
length

√
2) only in the directions (1, 1) and (1,−1), where the walk starts at the origin and

ends on the line y = 0. These are easy to count using the factorization idea. If B(z) is the
generating function of bilateral Dyck paths then B satisfies the equation

B(z) = 1 + 2z2D(z)B(z). (2.9)

There is a corresponding generalization of Motzkin paths to give bilateral Motzkin paths.

2.1. Adsorption of copolymers

The statistical mechanics of homopolymer adsorption at an impenetrable surface is relatively
well-understood and we shall give a brief account of what is known for the self-avoiding walk
model of homopolymer adsorption [22, 43]. Consider the d-dimensional hypercubic lattice Z

d

and attach a coordinate system so that each vertex has coordinates (x, y, . . . , z) where each
coordinate is an integer. The hyperplane z = 0 will play the role of an impenetrable surface.
Consider self-avoiding walks on Z

d which start at the origin and are confined to the half-space
z � 0. We call these half-space walks. Let c+

n(v) be the number of half-space walks with
exactly v + 1 vertices in the hyperplane z = 0. We say that the walk visits the plane z = 0 v

times, or has v visits. Each such vertex contributes an energy (associated with the adsorption
process) and we define the partition function as

Z+
n(α) =

∑
v�0

c+
n(v) eαv. (2.10)
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The limiting free energy is

κ+(α) = lim
n→∞ n−1 log Z+

n(α). (2.11)

The limit is known to exist [43] and κ+(α) is a convex, non-decreasing function of α. For
α � 0 (i.e. the surface is repulsive) from monotonicity of Z+

n(α) we have

Z+
n(α) � Z+

n(0) =
∑

v

c+
n(v) ≡ c+

n (2.12)

and it is known [126] that

lim
n→∞ n−1 log c+

n = κd. (2.13)

By considering a single term in the partition function (where v = 0) we have

Z+
n(α) � c+

n(0). (2.14)

By translating the walk through unit distance in the positive z-direction and adding an edge
from the origin to (0, 0, . . . , 1) it follows that c+

n(0) = c+
n−1 and this equation together with

the two inequalities above implies that

lim
n→∞ n−1 log Z+

n(α) = κd (2.15)

for all α � 0.
For α � 0 one can get a useful lower bound by considering the subset of walks which lie

entirely in the hyperplane z = 0. This gives

Z+
n(α) � c+

n(n) eαn (2.16)

so that

κ+(α) � κd−1 + α. (2.17)

This shows that κ+(α) is a non-analytic function of α with a singular point

αc ∈ [0, κd − κd−1]. (2.18)

With a little more work one can replace this with the corresponding open interval and, indeed,
get explicit (though rather weak) bounds on the location of the singularity [43, 54].

For directed models (e.g. Dyck paths and Motzkin paths) one can find the complete
solution for homopolymer adsorption [55, 57, 102, 127]. As an example consider the
adsorption of Motzkin paths. We write M(x, z) for the generating function of Motzkin
paths when we keep track of the number of vertices in the line y = 0, so that x is conjugate to
the number of visits and z is conjugate to the number of edges in the walk. (Note that x = eα .)
The same factorization (at the point where the walk first returns to y = 0) gives

M(x, z) = 1

1 − xz
+

1

1 − xz
xz2M(1, z)M(x, z) (2.19)

where setting x = 1 turns off the interaction with the surface so M(1, z) is exactly equal to
M(z) given by equation (2.7). Hence

M(x, z) = 1

1 − xz − xz2M(1, z)
(2.20)

where

M(1, z) = 1 − z − √
1 − 2z − 3z2

2z2
. (2.21)

The generating function has a square root singularity at z = 1/3, corresponding to the desorbed
phase, and a set of singularities when x = 1/[z + z2M(1, z)], corresponding to the adsorbed



Topical Review R285

0.1

0.15

0.2

0.25

0.3

z

0 2 4 6 8 10
x

Figure 1. The boundary of convergence of the generating function for a Motzkin path model of
homopolymer adsorption.

phase. The two branches meet at x = xc = 3/2 which corresponds to the adsorption transition,
so the critical value of the parameter α is αc = log(3/2). The boundary of convergence, zc(x),
of M(x, z) is shown in figure 1. Note that the limiting free energy for this model is given by
−log zc(eα). The crossover exponent (φ), which describes the shape of the free energy curve
as α → αc+, is 1/2.

We turn now to the problem of random copolymer adsorption and focus on the self-
avoiding walk model [97] in Z

d . In the version that we shall consider, we have walks with n
edges and n + 1 vertices, i = 0, 1, . . . , n. For i > 0 the ith vertex is labelled (or coloured )
A with probability p and B with probability 1 − p and we write χi = 1 if the ith vertex is A

and zero otherwise. The χi are independent random variables. The only contribution to the
energy is from vertices labelled A in the hyperplane z = 0. We write c+

n(vA|χ) for the number
of n-edge half-space walks with vertices labelled χ = {χ1, χ2, . . . , χn}, having vA vertices
labelled A in z = 0. The appropriate partition function, at fixed χ , is

Z+
n(α|χ) =

∑
vA

c+
n(vA|χ) eαvA (2.22)

and the corresponding free energy is

κ+
n (α|χ) = n−1 log Z+

n(α|χ). (2.23)

It is difficult to work with these half-space walks directly and it is convenient to define a subset
which we call loops. These are half-space walks with the additional constraints that

(i) x0 < xi � xn,∀0 < i < n, and
(ii) zn = 0,

where (xi, yi, . . . , zi) are the coordinates of the ith vertex of the walk. Let ln(vA|χ) be
the number of n-edge loops with vertices labelled χ = {χ1, χ2, . . . , χn}, having vA vertices
labelled A in z = 0, and define the partition function

Ln(α|χ) =
∑
vA

ln(vA|χ) eαvA . (2.24)
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The advantage of loops is that every concatenation of two loops yields a loop. That is, if we
consider two loops, L1 with m edges and L2 with n edges, and translate L2 such that its zeroth
vertex is coincident with the last vertex of L1, we have a loop with m + n edges. If the zeroth
vertex of L2 inherits the label of the last vertex of L1 we obtain the functional inequality

Lm(α|χ(1))Ln(α|χ(2)) � Lm+n(α|χ). (2.25)

Here χ(1) and χ(2) represent the sequences of labels on the two loops with m and n edges
respectively, and χ represents the concatenation of χ(1) and χ(2). Take logarithms, and then
take expectations with respect to χ . This gives

〈log Lm(α|χ(1))〉 + 〈log Ln(α|χ(2))〉 � 〈log Lm+n(α|χ)〉 (2.26)

which is a superadditive inequality. Since n−1〈log Ln(α|χ)〉 is bounded above for every finite
α, (κd + max[α, 0] will do the trick [97]) then (2.26) implies the existence of the limit

κ̄(α) = lim
n→∞ n−1〈log Ln(α|χ)〉, (2.27)

by a standard theorem on superadditive functions [72]. (Note that χ in Ln(α|χ) is interpreted
as an infinite sequence of random variables of which the first n are used to label the vertices
1, 2, . . . , n of the loop.) This establishes the existence of the limiting quenched average
free energy for loops. It remains to relate this to the corresponding quantity for half-space
walks. Since every loop is a half-space walk we get the inequality Ln(α|χ) � Z+

n(α|χ) by
inclusion. The derivation of an inequality in the opposite direction is more technical [97]
but it comes from an unfolding argument, similar to that first invented by Hammersley and
Welsh [44]. We do not give the details here but note that this idea implies the existence of
the limit limn→∞ n−1

〈
log Z+

n(α|χ)
〉

and that it is equal to κ̄(α). Using Cauchy’s inequality
one can prove that n−1

〈
log Z+

n(α|χ)
〉

is a convex function of α. Since when a sequence
of convex functions converges to a limit that limit is also convex, we see that the limiting
quenched average free energy κ̄(α) is a convex function of α. In addition κ̄(α) is monotone
non-decreasing, continuous and differentiable almost everywhere.

Exactly the same kinds of arguments as were used for the case of homopolymer adsorption
can be used to prove that

(i) κ̄(α) = κd for all α � 0, and

(ii) κ̄(α) � κd−1 + pα for all α.

This implies that there is a singular point (αq) such that

αq ∈ [0, (κd − κd−1)/p]. (2.28)

Since κ̄(α) = κ+(α) = κd for α � min[αc, αq] and κ̄(α) � κ+(α) for all α, it follows that
αq � αc, so that αq ∈ [αc, (κd − κd−1)/p]. With a little more effort one can replace the
closed interval by the corresponding open interval. Very little is known about the nature of the
singularity at αq . For instance, it isn’t known if κ̄(α) is differentiable at that point although
one might expect that it would be differentiable but not twice differentiable.

One might hope to be able to do much better if the self-avoiding walk model were replaced
by a directed walk model (such as Motzkin paths) but this is not the case. We know virtually
the same about the adsorption process for random copolymers for the self-avoiding walk
and directed walk models. The essential difficulty is the need to calculate quenched average
properties and we only have rather general approaches available, which work about as well
for the self-avoiding walk case as for directed walks.
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2.2. Localization of copolymers

A problem which has received considerable attention over the last few years is localization of
a random copolymer at an interface between two immiscible liquids. Think of an interface
between oil and water and consider a copolymer with two kinds of monomers, one of which
prefers to be in the water phase while the other prefers to be in the oil phase. Suppose that
the two kinds of monomers are distributed uniformly and independently along the polymer
chain. At high temperatures entropic effects should dominate and the polymer will prefer one
of the two bulk phases (the one which optimizes its energy) and delocalize into that phase.
(Asymmetry between the hydrophilic and lyophilic interactions ensures that one of the two
bulk phases is energetically preferable.) At low temperatures, energetic effects should be
dominant and the polymer will cross the interface frequently so that most monomers will be
in their preferred phase. We shall call this a localized phase. There should be a temperature at
which the system switches from one kind of behaviour to the other and this should appear as a
phase transition (where the limiting quenched average free energy is singular) and there should
be a dramatic change in the path properties at this temperature. The localization has been
seen experimentally [100] in a neutron reflection study of a random copolymer and should
be compared with the behaviour of a block copolymer [20, 100] where the blocks extend a
considerable distance into the two liquid phases.

In developing a theoretical treatment of this phenomenon one can aim for different kinds
of results. At the level of thermodynamic properties one can prove the existence of a phase
transition (in some parameter space) by showing that the quenched average free energy has a
singular point, or is singular along a curve in the parameter space, in the n → ∞ limit. See
for instance [10, 75, 78]. This says nothing directly about the typical conformation of the
polymer in the different phases. Alternatively one can aim to prove something about the path
properties of the polymer. See for instance [2, 9, 48]. For instance one might hope to prove
that the typical distance of a monomer from the interface goes like nν1 in a delocalized phase
and like nν2 in a localized phase, with ν2 < ν1.

Garel et al [31] suggested a simple model of this phenomenon (see also [17, 85]) and Sinai
seems to have given the first rigorous mathematical treatment [105, 106]. Bolthausen and den
Hollander [10] made an important contribution to our understanding when they analysed a
directed walk model with asymmetric interactions. Essentially the energies associated with
the hydrophilic and lyophilic interactions need not be identical. They considered a directed
walk model in two dimensions (closely related to bilateral Dyck paths), proved that the model
has a phase transition and investigated the shape of the phase boundary. Their model is a
random walk in 1 + 1 dimensions with n edges. Suppose that χ = {χ1, χ2, . . .} is an i.i.d.
sequence of random variables taking values ±1 with probability 1/2. The random variable
χi is associated with the ith edge of the walk (so that each edge is labelled either +1 or −1).
The edges play the role of monomers and ±1 labels the edge as lyophilic or hydrophilic. The
Hamiltonian can be written as

H = −kBT λ

n∑
i=1

(χi + h)�i, (2.29)

where kB is Boltzmann’s constant and T is the absolute temperature. �i = 1 if the ith edge
is in the upper half plane and −1 if it is in the lower half plane. (Note that in this model no
edge can lie in the line y = 0.) λ represents the strength of the interaction and h ∈ [0, 1] is
an asymmetry parameter. When h = 0 the strength (though not the sign) of each monomer–
solvent interaction is identical while when h > 0 lyophilic monomers (say) have a stronger
interaction with both solvents than hydrophilic monomers.
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Qualitatively one expects the following behaviour. When λ = 0 there is no interaction of
either monomer with either solvent. We simply have random walks in the vertical direction
(normal to y = 0). The walk will wander away from y = 0 and we have delocalization. When
λ > 0 and h = 0 there is an energetic advantage for each monomer to be in its preferred
solvent and the polymer will cross the interface frequently. There is some loss of entropy
but this is compensated by the energy gain. When λ > 0 and h is close to unity there is
only a small interaction of a hydrophilic monomer with either solvent while the interaction of
lyophilic monomers with each solvent is stronger than when h = 0. The polymer delocalizes
into the oil phase for both energetic and entropic reasons. One expects a phase boundary in the
(λ, h)–plane separating the localized and delocalized phases. Bolthausen and den Hollander
[10] showed that this is indeed the case, with the phase boundary passing through the point
λ = 0, h = 0. This work was extended by Biskup and den Hollander [9] who investigated path
properties and, in particular, established exponential tightness perpendicular to the interface
in the localized phase.

A number of related models (see for instance [76, 78]) have been investigated where the
underlying model of the conformation of the walk is a random walk, a directed walk or a
self-avoiding walk and which differ in the details of the assumed Hamiltonian. In some cases
it is only a difference in language since mappings exist between some pairs of Hamiltonians.
Maritan et al [76] considered a model related to that of Bolthausen and den Hollander. The
Hamiltonian differs by having charges on the two kinds of monomers which can be different
in magnitude but (like the model in [10]) where a given monomer type interacts with the two
solvents with energy terms which differ in sign but have the same magnitude. That is, the
asymmetry is treated slightly differently. They considered both random and self-avoiding walk
models of the polymer conformations. They showed that when the model is symmetric (i.e. all
monomer–solvent interactions are nonzero and have the same magnitude) the system is always
localized. This agrees with the results in [31] and in [10] when h = 0. The argument used by
Maritan et al is rigorous for the random walk case but relied on an unproven (but extremely
reasonable) assumption for the self-avoiding case. A rigorous version of the self-avoiding
walk argument appears in [75].

We shall next describe a self-avoiding walk model first introduced by Martin et al [78].
Let χ = {χ1, χ2, . . . χn} be a sequence of independently and identically distributed random
variables where χi = 1 with probability p and 0 with probability 1 − p. Consider the set of
n-edge self-avoiding walks on the d-dimensional hypercubic lattice Z

d , starting at the origin.
Number the vertices of each walk i = 0, 1, . . . , n and colour the ith vertex (i = 1, 2, . . . , n)

according to the random variable χi so that if χi = 1 vertex i is coloured A and otherwise
it is coloured B. (Each walk has the same sequence of colours for its vertices so that the
walks represent the set of conformations while χ represents the randomly chosen, but then
fixed, monomer sequence.) We write (x, y, . . . , z) for the coordinates of a vertex in Z

d . Let
cn(vA, vB |χ) be the number of these walks, with given colouring sequence χ , which have
vA vertices coloured A with positive z-coordinate and vB vertices coloured B with negative
z-coordinate. Define the partition function to be

Zn(α, β|χ) =
∑
vA,vB

cn(vA, vB |χ) eαvA+βvB (2.30)

where α is the (reduced) energy of an A vertex when it is in the z > 0 phase and β is the
(reduced) energy of a B vertex in the z < 0 phase. The hyperplane z = 0 is the interface
between the two phases and there is no energy contribution for A or B vertices in this interfacial
plane. Moreover the energy of an A vertex in the z < 0 phase is zero and the energy of a B
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vertex in the z > 0 phase is also zero. This choice of Hamiltonian simplifies the analysis of
the model.

The free energy at fixed χ is

κn(α, β|χ) = n−1 log Zn(α, β|χ) (2.31)

and Martin et al proved the existence of the limiting quenched average free energy

κ̄(α, β) = lim
n→∞〈κn(α, β|χ)〉 (2.32)

where the angular brackets denote an average over all possible colourings. In addition, the
limiting quenched average free energy is a convex function of α and β and is monotone
non-decreasing in both variables.

If α > 0 and β < 0 the A vertices are attracted to the z > 0 phase and the B vertices
are repelled from the z < 0 phase, so the walk delocalizes into the z > 0 phase. Similarly,
if α < 0 and β > 0 the A vertices are repelled from the z > 0 phase and the B vertices
are attracted to the z < 0 phase, so the walk delocalizes into the z < 0 phase. In either
case, the walk has all the entropy of an unrestricted self-avoiding walk and one can show that
κ̄(α, β) = κd + pα when α � 0 and β � 0, while κ̄(α, β) = κd + (1 − p)β when α � 0 and
β � 0. If we start at a point (α1, β1) with α1 > 0 and β1 < 0 (i.e. in the fourth quadrant of
the (α, β)-plane) and increase β at fixed α the free energy remains constant while β � 0. At
some point on the line α = α1, when 0 � β � pα1/(1 − p), the free energy ceases to be
constant, so there is a singularity at (α1, βc(α1)) with 0 � βc(α1) � pα1/(1 − p). To rule
out the possibility that the singularites are all on the line β = pα/(1 − p) Martin et al used
the following argument. Consider the particular sequence of colours ABBBBA. On almost all
sequences of length n (for n sufficiently large) this sequence appears as a subsequence at least
εn times for some positive ε. Consider walks with all vertices in the plane z = 1 except for
the B vertices in these sequences. For each such sequence two of the B vertices are in z = 0
and two are in z = −1 (forming a U shape). All A-vertices of the walk are in z > 0 and at
least 2εn of the B-vertices are in z < 0, so the energy contribution is at least pnα + 2εnβ and
the limiting quenched average free energy is at least pα + 2εβ. This is larger than κd + pα if

β >
κd

2ε
. (2.33)

Hence βc(α) is bounded above for α > 0. Madras and Whittington [75] considered the same
model and proved a number of additional results. In the first quadrant (α � 0, β � 0) they
showed that there is a phase boundary β = βc(α) which

(i) lies strictly below the line β = pα/(1 − p) except at α = 0,
(ii) passes through the origin but is strictly positive for α > 0,

(iii) is a concave function of α and is therefore continuous, and
(iv) is a non-decreasing function of α.

This, together with the bound in [78] establishes that the phase boundary has a horizontal
asymptote. There is a second, symmetry related, phase boundary above the line β =
pα/(1 − p). The behaviour in the third quadrant is also well-understood [75, 78]. A
sketch of the phase diagram, showing the phase boundaries, is given in figure 2.

This model can be extended by adding an energy term for all vertices in the interfacial
plane. The partition function is then

Zn(α, β, γ |χ) =
∑

vA,vB ,w

cn(vA, vB,w|χ) eαvA+βvB +γw (2.34)

where cn(vA, vB,w|χ) is the number of n-edge self-avoiding walks starting at the origin,
having vertex colouring χ , with vA vertices coloured A with positive z-coordinate, vB vertices
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Figure 2. Sketch of phase diagram when γ = 0 and p = 1/2, showing the phase boundaries
between the regions where the walk is delocalized into the upper half-space (α), into the lower
half-space (β) and where the walk is localized at the interface. Asymptotes are indicated with
short horizontal and vertical lines.

delocalized

delocalizedlocalized

α

β

Figure 3. Sketch of phase diagram when γ > γ1 and p = 1/2, showing the phase boundaries
between the regions where the walk is delocalized into the upper half-space (α), into the lower
half-space (β) and where the walk is localized at the interface. Asymptotes are indicated with
short horizontal and vertical lines.

coloured B with negative z-coordinate and having w vertices (of either colour) in the plane
z = 0. This partition function reduces to (2.30) when γ = 0. (This vertex–interface interaction
term for a model of localization was first considered by Sinai [106]. See also [17]. It connects
to the problem of adsorption of a homopolymer at a penetrable surface [43] when α = β = 0.)

When γ < 0 (so that the interface is repulsive) the phase diagram is qualitatively like that
when γ = 0 [75]. There is a value of γ, γ1 say, such that for all γ > γ1 the point (0, 0, γ ) is in
the interior of the localized phase. See figure 3 for a sketch of the phase diagram in this case.
It is known that γ1 � 0 but it is an open question as to whether or not γ1 = 0. For sufficiently
large γ the system is localized at all values of α and β [75].



Topical Review R291

The model discussed in [75] is for a self-avoiding walk with its first vertex fixed at the
origin, i.e. in the interfacial plane. This restriction was removed in [51] so that the first vertex
can be at any distance from the interfacial plane. See also [75]. It is shown in [51] that the two
models have identical free energy (in the n → ∞ limit) and hence identical phase diagrams.

2.3. Collapse of copolymers

The collapse of polymers when the temperature is lowered or the solvent quality is made worse
is an old and well-studied problem. See [8] for a recent review of both the experimental and
theoretical literature. In a good solvent, or at high temperatures, it is energetically favourable
for the monomers to be surrounded by solvent molecules so the polymer forms a random
coil. In three dimensions the radius of gyration scales as nν where ν is about 0.588. In a
poor solvent, or at low temperature, there is an energetic disadvantage to having monomer–
solvent contacts so the polymer collapses into a compact ball to maximize monomer–monomer
contacts and minimize monomer–solvent contacts. This has been observed experimentally
by light scattering [93, 117], neutron scattering [92] and viscosity measurements [116]. The
collapse from a coil to a ball is known as the theta transition and the temperature corresponding
to the transition is the θ -point.

A natural model is to consider self-avoiding walks where we keep track of the number of
monomer–monomer contacts. We define a contact as an edge of the lattice which is not an
edge of the walk but which is incident on a pair of vertices of the walk. Given a particular
lattice, let cn(k) be the number of n-edge self-avoiding walks with k contacts. If we weight
the walk according to the number of contacts we can define a partition function

Qn(γ ) =
∑

k

cn(k) eγ k (2.35)

and the corresponding free energy

Fn(γ ) = n−1 log Qn(γ ). (2.36)

If γ � 0 then walks with few contacts will be favoured and we expect that the general
behaviour will resemble that of a self-avoiding walk. For large positive γ contacts will be
favoured and we expect the walk to collapse to a compact ball. There should be a critical value
γc > 0 where the free energy (in the n → ∞ limit) is non-analytic so that the system has a
phase transition.

The model is easy to describe but difficult to handle. The existence of the limit

F(γ ) = lim
n→∞ Fn(γ ) (2.37)

has only been established when γ � 0 [120] and we have very little other rigorous information.
Of course, the model can be investigated numerically and there is strong evidence of a
phase transition (see e.g. [8, 68, 119] and references therein). One can construct simpler,
directed walk models for which it is possible to show rigorously that a phase transition exists
[12, 54, 56, 57].

When we examine a random version of this model it seems natural to associate the
randomness with the vertices. We consider a sequence of independent random variables
χ = {χ0, χ1, χ2, . . .} and associate the first n+ 1 of these with the n+ 1 vertices of each n-edge
self-avoiding walk. Each χi is +1 with probability p and −1 with probability 1 − p. One can
think of χi = +1 as meaning that the ith monomer is an A and χi = −1 as meaning that the ith
monomer is a B. The energy of a walk, given χ , is determined by the numbers of AA,AB and
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BB contacts. Suppose that, given χ , a particular walk has kAAAA contacts, kABAB contacts
and kBBBB contacts. We can write the partition function (for a given χ ) as

Zn(β|χ) =
∑

cn(kAA, kAB, kBB |χ) e−βH(kAA,kBB,kAB |χ) (2.38)

where H is the Hamiltonian. cn(kAA, kAB, kBB |χ) is the number of n-edge walks with the
corresponding numbers of contacts, given the monomer sequence χ .

One form of the Hamiltonian for a self-avoiding walk, ω, which has been considered in
[34, 63, 83, 94], is

H(ω|χ) = v0

∑
i<j

�ijχiχj , (2.39)

where �ij = 1 if the ith and j th vertices of ω are near-neighbours on the lattice (but |i−j | 	= 1).
We note that ∑

i<j

�ijχiχj = kAA + kBB − kAB. (2.40)

If v0 > 0 then like monomers repel and unlike monomers attract so this is a model of a
highly screened Coulomb system. If v0 < 0 then like monomers attract and unlike monomers
repel, so this can be seen as a model of a system with hydrophilic and hydrophobic monomers.
Nothing is known rigorously about this model but we shall give a brief description of the
qualitative behaviour here and discuss the methods used in sections 3.2 and 4.2. Some key
references are [24, 32, 34, 62, 63, 83, 84, 123].

If v0 > 0 (the screened Coulomb case) the results depend on the proportion of A monomers
(i.e. on the extent to which the charges are unbalanced). Define

x =
∑n

i=0 χi∑n
i=0 |χi | =

∑n
i=0 χi

n + 1
. (2.41)

If x = 0 (so the polymer is ‘uncharged’) there is a transition from an expanded coil to a
compact ball as the temperature is decreased, similar to the theta transition in homopolymers.
There is some evidence [34] that the exponent characterizing the size of the polymer at the
transition temperature is slightly higher than for a homopolymer. However, Monari and Stella
[83] argued, and presented evidence from exact enumeration and series analysis, that random
copolymer collapse (with this Hamiltonian and x = 0) is in the same universality class as
homopolymer collapse. As |x| increases there is a theta-like transition from a coil to a ball,
but the temperature at which this occurs decreases as |x| increases [34, 63]. For |x| large
enough [34, 36, 63] there is no transition and the polymer behaves like a self-avoiding walk at
all temperatures. This is presumably because the repulsions between like monomers are more
important than the attractions between unlike monomers when |x| is large enough. If v0 < 0
there is a theta-like collapse transition for all values of |x| [63].

The Hamiltonian defined in (2.39) is not the only possibility. If the copolymer has two
types of monomer, one of which is hydrophilic and the other is hydrophobic, then a modified
version of a solvent–monomer potential seems appropriate. This kind of potential was used
by Garel et al [32]. The Hamiltonian (for a lattice model) can be written as [98]

H(ω|χ) =
∑
i<j

�ij (χi + χj ) = 2kAA − 2kBB. (2.42)

Another form of Hamiltonian which has been used is one in which a value of the energy
is randomly assigned to every contact [30, 107]. This has the advantage that the annealed
problem is closely related to the corresponding homopolymer problem [6, 84].
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3. Approximation schemes

We have seen that calculating the quenched average free energy presents severe difficulties and,
because of this, it is interesting to explore various approximations which make the calculation
easier. It is not enough to change the underlying conformational model because the essential
difficulty is in taking the average (over all colourings) of the logarithm of the partition
function.

We begin by describing the annealed approximation which is obtained by switching the
order of the expectation and the logarithm in the expression for the free energy and show that
this gives a bound on the quenched average free energy. Annealing is a poor approximation
in some circumstances and can give qualitatively incorrect results. It can be regarded as
the first approximation in a hierarchy of approximations [69, 87] to the quenched average
free energy due to Morita. These Morita approximations form a sequence of bounds on the
quenched average free energy and the details of this are described in section 3.2. A different
approximation scheme, the replica trick, is briefly described in section 3.3. There are a number
of other approximation schemes such as the cluster variation method and self-consistent field
approximations that have been used to study random copolymer models [18, 27, 95, 101].
These are beyond the scope of this review.

3.1. The annealed approximation

Given a system with colouring χ and parameter β, recall that the finite n free energy is related
to the partition function by

κn(β|χ) = n−1 log Zn(β|χ), (3.1)

and the quenched average free energy [14, 79] is 〈κn(β|χ)〉. In the annealed approximation
one interchanges the order of the average and the logarithm so that the annealed free energy is
n−1 log〈Zn(β|χ)〉. In many cases this is rather easy to calculate if one knows the free energy
of an appropriate non-random system. We shall give two examples based on the adsorption
problem.

We first consider the annealed approximation for the self-avoiding walk model of random
copolymer adsorption. Recall from section 2.1 that c+

n(v) is the number of n-edge half-space
self-avoiding walks with v visits, that p is the probability that a vertex is labelled A and that
only A vertices interact with the surface. Thus we can write

〈
Z+

n(α|χ)
〉 =∑

v

v∑
vA=0

c+
n(v)

(
v

vA

)
pvA(1 − p)v−vA eαvA

=
∑

v

c+
n(v)(p eα + 1 − p)v. (3.2)

If we define γ = log(p eα + 1 − p) then we see that
〈
Z+

n(α|χ)
〉 = Z+

n(γ ) (as defined in
equation (2.10)) so the annealed free energy is related to the homopolymer (non-random) free
energy at a different value of the energy parameter, i.e.

lim
n→∞ n−1 log

〈
Z+

n(α|χ)
〉 = κ+(γ ). (3.3)

If we knew the homopolymer free energy for all values of the parameter α then we would be
able to calculate the annealed free energy directly. The results derived for the homopolymer
adsorption problem in section 2.1, together with (3.3), show that the annealed problem exhibits
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Figure 4. The boundary of convergence of the generating function for a Motzkin path model
of copolymer adsorption in the annealed approximation, when p = 1/2. The boundary for
homopolymer adsorption (lower curve) is shown for comparison.

a phase transition at α = αa and that αa > αc for all p < 1. Indeed, we see that

αa = log

[
(eαc + p − 1)

p

]
(3.4)

and hence αa goes to infinity as p goes to zero.
By the arithmetic mean–geometric mean inequality

lim
n→∞ n−1 log

〈
Z+

n(α|χ)
〉
� κ̄(α) (3.5)

and the two are both equal to κd for α � 0 and, indeed, for α � min[αa, αq]. This is enough
to show that αa � αq . Taken together with the results of the last paragraph this implies that
αc < αq for all p < 1 and that αq goes to infinity as p → 0. The question of whether or not
αq = αa is open.

For the cases (such as Dyck paths and Motzkin paths) where the homopolymer adsorption
problem can be solved exactly, the annealed problem can also be solved exactly. For instance,
in the case of adsorption of randomly coloured Motzkin paths in the annealed approximation,
the generating function, A(x, z) with x conjugate to the number of A-visits and z conjugate to
the number of edges, can be written down directly from (2.20) by replacing x by px + 1 − p,
giving

A(x, z) = 1

1 − (px + 1 − p)z − (px + 1 − p)z2M(1, z)
. (3.6)

(Note that x = eα .) A(x, z) is singular when the denominator is zero and if we look at where
this curve meets the line z = 1/3 we see that the critical value of x, xa(p), is given by

xa(p) = 1

p

[
9

3 + M(1, 1/3)
+ p − 1

]
= 2p + 1

2p
. (3.7)

Since αa = log xa this determines αa and gives a bound on αq for adsorption of Motzkin paths.
The boundary of convergence in the annealed approximation (for p = 1/2) is compared to
that of the homopolymer in figure 4.
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For the adsorption problem the annealed approximation appears to give a reasonable
representation of the behaviour of the free energy for α close to its critical value and, of
course, is exact for α < αa . It is not clear whether or not it correctly predicts the value of the
crossover exponent φ, which determines the detailed shape of the free energy as α approaches
its critical value. For larger values of α it does rather poorly since it predicts that the free
energy has asymptotic slope equal to unity, while we know that it should be asymptotic to p
[96]. We shall see in the next section how this can be improved by using an approximation
due to Morita [87].

Viewed as an approximation to the quenched system, for some problems the annealed
treatment is quite good [7] while for others it is very bad and gives qualitatively wrong
predictions. For instance [96] the problem of localization of randomly coloured Dyck paths
has been considered in the annealed approximation and the form of the phase diagram is quite
different from that expected for the quenched version of the problem. In particular, in the
first quadrant (where A-vertices are attracted to one phase and B-vertices to the other) there
is no localized phase in the annealed treatment [96]. (See [17] for a treatment of a related
model with the same overall result.) Using the Morita approximation [87] gives a qualitatively
correct picture [96] for the shapes of the phase boundaries but not for the path properties in
the interior of the localized phase.

There are problems (such as polyelectrolytes [11]) for which annealing is not an
approximation. If the time scale associated with changes in the randomness is sufficiently
short (i.e. the randomness changes sufficiently quickly) then annealing is the correct model.
For random copolymers this is not the case. However, there are closely related models, for
instance where a homopolymer adsorbs on a randomly heterogeneous surface [81, 82, 114],
where annealing might be appropriate under some circumstances. If the surface is mobile (i.e.
can rearrange) and this happens on a time scale short compared to conformational changes
in the polymer, then the annealed model is appropriate. Usually the quenched and annealed
models will show different behaviour and this is partly because in the annealed case (e.g.
adsorption at a heterogeneous and sufficiently mobile surface) the randomness can adjust to
optimize the energy of the system.

3.2. The Morita approximation

The theory behind Morita approximations has been developed by Morita and others in a series
of papers since 1963 [69, 79, 87]. The basic ideas behind these approximations are:

(i) that the probability distribution governing a quenched random system is the solution to a
constrained optimization problem (this was first noted by Mazo [79]);

(ii) the constraints in the given optimization problem are equivalent to a set of constraints
involving the moments of the quenched random probability distribution (this was first
noted by Morita [87]);

(iii) solving the given optimization problem with some of the moment constraints relaxed gives
a probability distribution which can be used to obtain an upper bound on the quenched
average free energy 〈κn(β|χ)〉 = n−1〈log Zn(β|χ)〉 [69, 87].

There are in fact many constrained optimization problems which could satisfy (i) but those that
have proved useful are those in which the objective function (the function being optimized)
has the form of either an entropy or free energy functional. To explain this further, we next
present several versions of optimization problems as in (i), equivalent sets of constraints as
in (ii) and then discuss the consequences of (iii) relevant to the study of random copolymer
systems.
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For simplicity we focus on a generic random copolymer model with fixed degree of
polymerization n, with �n (the set of all distinct polymer conformations) finite, and where there
are only two types of monomers, A and B. However, it should be noted that the approach as laid
out in [69, 79, 87] is broadly applicable to most problems involving quenched randomness.
Given any ω ∈ �n, we assume that n of ω’s vertices have been labelled with the integers
{1, 2, . . . , n}. A colouring is given by χ = {χ1, . . . , χn} ∈ {0, 1}n where χi = 1 indicates
the ith vertex is coloured A and otherwise it is coloured B. Given any colouring χ and
polymer conformation ω, we assume that V (ω|χ) ≡ −βH(ω|χ), and π(χ), the probability
of colouring χ being chosen, are known. A configuration of the random copolymer system
is given by (ω, χ) where ω ∈ �n and χ ∈ {0, 1}n. Thus in the quenched random case the
probability that the system is in configuration (ω, χ) is given by

ρq(ω, χ) = π(χ) eV (ω|χ)

Zn(β|χ)
(3.8)

where, as usual, Zn(β|χ) =∑ω∈�n
eV (ω|χ).

In the following we take Boltzmann’s constant to be unity. Consider ρ(ω, χ) to be
an arbitrary probability mass function defined on �n × {0, 1}n. Mazo [79] and Morita
[87] established formally that ρ(ω, χ) = ρq(ω, χ) is the solution to each of the following
constrained optimization problems:

I. (Maximum Entropy) Maximize

O1(ρ) = S(ρ) = −
∑

χ∈{0,1}n

∑
ω∈�n

ρ(ω, χ) log ρ(ω, χ) = −〈log ρ(ω, χ)〉ρ (3.9)

subject to the constraints:
(C0) (Constant Energy Constraint)

〈H(ω|χ)〉ρ =
∑

χ∈{0,1}n

∑
ω∈�n

ρ(ω, χ)H(ω|χ) = E (3.10)

for some E;
(C1) (Correct Marginals Constraints) for each χ∑

ω∈�n

ρ(ω, χ) = π(χ). (3.11)

II. (Minimum Free Energy) Maximize

O2(ρ) = −βF(ρ) = −β〈H(ω|χ)〉ρ + S(ρ) (3.12)

subject to the correct marginal constraints in I (C1).
III. Maximize

O3(ρ) = −βF̂ (ρ) = −βF(ρ) + 〈log π(χ)〉ρ = −β〈H(ω|χ)〉ρ + S(ρ)

+
∑

χ∈{0,1}n

∑
ω∈�n

ρ(ω, χ) log π(χ) (3.13)

subject to the correct marginal constraints in I (C1).

In all three cases it is straightforward to establish that ρq(ω, χ) is the solution by introducing
Lagrange multipliers associated with each constraint, λE for (3.10) and λ(χ) + 1 for (3.11),
and then maximizing the modified objective function. Note that to obtain ρq(ω, χ) as in
equation (3.8), λE = −β. From problem II, F(ρ) has the form of a free energy functional and
the problem is equivalent to minimizing F. In this case, evaluating the objective function O2 at
ρq(ω, χ) gives −βF(ρq) = 〈log Zn(β|χ)〉π −〈log π(χ)〉π where the first term is n〈κn(β|χ)〉
and the second term is a quantity that can be calculated based entirely on π and hence is
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typically straightforward to calculate. The advantage of problem III is that evaluating the
objective function O3 at ρq(ω, χ) gives −βF̂ (ρq) = 〈log Zn(β|χ)〉π = n〈κn(β|χ)〉, so that
the quenched average free energy is recovered essentially immediately.

The set of constraints specified by equation (3.11) is equivalent to a set of constraints on
the moments of π . For any colouring χ , we define A(χ) to be the subset of {1, 2, . . . , n} such
that χi = 1 for all i ∈ A(χ) and otherwise χi = 0. Let C ⊆ {1, 2, . . . , n} and define

fC =
∑

χ∈{0,1}n
π(χ)
∏
i∈C

χi =
∑

{χ |C⊆A(χ)}
π(χ) (3.14)

for the set C being non-empty (i.e. C 	= ∅) and f∅ = 1. For instance, for C = {i}, f{i} in
equation (3.14) is the probability that the ith vertex is coloured A. A standard inclusion–
exclusion argument then gives the inversion formula

π(χ) =
∑

{C|A(χ)⊆C}
(−1)|C|−|A(χ)|fC. (3.15)

Thus specifying π is equivalent to specifying the fC’s.
Hence the constraints given by I (C1) are formally equivalent to:

(C2) for each C ⊆ {1, 2, . . . , n}∑
χ∈{0,1}n

∑
ω∈�n

ρ(ω, χ)
∏
i∈C

χi = fC. (3.16)

Furthermore these constraints can be written in the following equivalent form:

(C3) (a) C = ∅ in equation (3.16) gives∑
χ∈{0,1}n

∑
ω∈�n

ρ(ω, χ) = 1 (3.17)

(b) given (a), it is possible to rewrite the others, i.e. for C 	= ∅, as∑
χ∈{0,1}n

∑
ω∈�n

ρ(ω, χ)

(∏
i∈C

χi − fC

)
= 0. (3.18)

From the equivalence between the constraints (C1), (C2) and (C3), we know that
maximizing Oi (i = 1, 2, or 3) over ρ subject to the constraints (C0), if appropriate, and
(C2) or (C3) must lead to the solution ρ(ω, χ) = ρq(ω, χ). Using (C3), the maximization is
done by introducing Lagrange multipliers −β for (C0), λ∅ + 1 for (3.17), and λC for (3.18).
For problem I and II the solution has the form

ρ0(ω, χ) = 1

Z
eV (ω|χ)+

∑
C 	=∅ λC [(

∏
i∈C χi)−fC ] (3.19)

where Z = ∑χ

∑
ω eV (ω|χ)+

∑
C 	=∅ λC [(

∏
i∈C χi )−fC ] is the normalization constant, λ∅ = −logZ ,

and the remaining λCs must be chosen so that the constraints will be satisfied. For problem
III the solution has the form

ρ1(ω, χ) = 1

Z∗ π(χ) eV (ω|χ)+
∑

C 	=∅ λC [(
∏

i∈C χi )−fC ] (3.20)

where Z∗ = ∑χ

∑
ω π(χ) eV (ω|χ)+

∑
C 	=∅ λC [(

∏
i∈C χi)−fC ] is the normalization constant, λ∅ =

−logZ∗ and the remaining λCs must be chosen so that the constraints will be satisfied.
Thus using the constraints (C3) has had the effect of finding a represention for the solution
probabilities in a form that would be similar to those from an annealed random sytem. Z∗ has
the advantage that in the equivalent annealed system the colouring probabilities are given by
π while in the equivalent annealed system for Z each colouring is equally likely. In either
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case, solving for the remaining λCs is formally equivalent to maximizing λ∅ (i.e. −logZ or
−logZ∗, as appropriate) over the λCs (see [69]).

Rephrasing the results from the last paragraph, ρq is also the solution of the following
two optimization problems:

IV. Minimize

O4({λC,C 	= ∅}) = logZ = log
∑

χ

∑
ω

eV (ω|χ)+
∑

C 	=∅ λC [(
∏

i∈C χi )−fC ] (3.21)

and then insert the optimal values of the λCs into equation (3.19) to solve for the optimal
probabilities ρ0(ω, χ).

V. Minimize

O5({λC,C 	= ∅}) = logZ∗ = log
∑

χ

∑
ω

π(χ) eV (ω|χ)+
∑

C 	=∅ λC [(
∏

i∈C χi)−fC ] (3.22)

and then insert the optimal values of the λCs into equation (3.20) to solve for the optimal
probabilities ρ1(ω, χ).

The optimal value of O4 is equal to the optimal value of O2 and the optimal value of O5 is
equal to the optimal value of O3.

Note also that, for example, problem (V) is equivalent to the following formulation.

VI. Given ρ1(ω, χ) and the partition function Z∗ as defined in equation (3.20), determine the
values of λC,C 	= ∅, that enforce the constraints〈∏

i∈C

χi

〉
ρ1

= fC (3.23)

for each C 	= ∅ and then use the resulting λCs in equation (3.20) to solve for the optimal
probabilities ρ1(ω, χ).

This is equivalent to (V) since solving ∂ logZ∗
∂λC

= 0 is equivalent to solving equation (3.23).
This viewpoint is taken for example in [96].

Having presented several viewpoints on (i) and (ii), we now turn to (iii), i.e. how does
one use these results to obtain bounds on the quenched average free energy? Let T be any
subset of P({1, 2, . . . , n}), the set of all subsets of {1, 2, . . . , n}. If the maximization of
O3(ρ) is performed subject to the constraint (3.17) and to the constraints given by (3.18) for
C ∈ T only, then the maximum value −βF̂ T is an upper bound on −βF̂ q = −βF̂ (ρq).
Furthermore for T1 ⊆ T2 ⊆ P({1, 2, . . . , n}), F̂ T1 � F̂ T2 � F̂ q . Since −βF̂ q is given by
−βF̂ q = n〈κn(β|χ)〉, this gives a systematic way to obtain upper bounds on 〈κn(β|χ)〉.
Furthermore, since the optimal value of O3 is the same as that of O5, problem (V ) modified
so that only the λCs corresponding to C ∈ T are used (i.e. set the remaining λCs to zero)
is equivalent to problem III on the reduced set of constraints. Solving such an optimization
problem on a reduced set of constraints will be referred to as a Morita approximation based
on T .

Note that for the special case that T = ∅ the solution to the Morita approximation based
on T and O2 or O4 is

ρa0(ω, χ) = eV (ω|χ)∑
ω,χ eV (ω|χ)

(3.24)

which corresponds to an annealed random copolymer model in which each colouring is equally
likely. The corresponding result based on O3 or O5 is

ρa1(ω, χ) = π(χ) eV (ω|χ)∑
ω,χ π(χ) eV (ω|χ)

(3.25)
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which corresponds to an annealed random copolymer model in which colouring χ occurs
with probability π(χ). The corresponding upper bounds on the quenched average free
energy are given respectively by n−1 log

∑
ω,χ eV (ω|χ) and n−1 log

∑
ω,χ π(χ) eV (ω|χ). Since

these annealed models correspond to unconstrained optimization of O2 or O3 over the set of
probability functions ρ, the process of obtaining Morita approximations has also been referred
to as constrained annealing.

Another commonly considered case is the case that T = {{1}, {2}, . . . , {n}} so that the
constraints in equation (3.18) involve f{i}, the probability that vertex i is coloured A. Using
the problem (V) viewpoint for example, the Morita upper bound on the quenched average free
energy in this case is obtained by minimizing n−1 log

∑
ω,χ π(χ) eV (ω|χ)+

∑n
i=1 λi [χi−f{i}] with

respect to the λis. However, if f{i} = f{j} for all i and j (this would be the case, for example,
if the colours are assigned to the vertices independently and with identical probabilities)
then typically the simpler problem of minimizing n−1 log

∑
ω,χ π(χ) eV (ω|χ)+λ

∑n
i=1[χi−f{1}] is

solved to obtain an upper bound on the quenched average free energy. This is equivalent to
relaxing the constraints in equation (3.18) to

〈∑
i χi

〉
ρ

= nf{1}. Both of these minimization
problems involve constraining the first moments of the colouring distribution. Any approach
for obtaining an upper bound on the quenched average free energy which involves constraints
only on the first moments of the colouring distribution will be referred to herein as a first
moment Morita approximation.

For most random copolymer models studied, an upper bound obtained using a first
moment Morita approximation is better (i.e. closer to the quenched average free energy) than
the upper bound obtained for the corresponding annealed random copolymer model. A related
approach for obtaining an improved upper bound over the annealed case has been used in
[10, 75] for studying random copolymer localization. The approach can be applied if V (ω|χ)

can be decomposed into two terms one of which does not depend on ω, i.e. V (ω|χ) =
V0(χ) + V1(ω|χ). In this case, the quenched average free energy can be rewritten as

〈κn(β|χ)〉π = n−1〈log Zn(β|χ)〉π = n−1〈V0(χ)〉π + n−1
〈
log Z†

n(β|χ)
〉
π

(3.26)

where Z
†
n(β|χ) is the partition function corresponding to the modified Hamiltonian, H1(ω|χ),

such that V1(ω|χ) = −βH1(ω|χ). (Note that V0(χ) typically will depend on β.) Thus one
can obtain an upper bound on 〈κn(β|χ)〉π by determining the first term, n−1〈V0(χ)〉π , exactly
and obtaining an upper bound on the quenched average free energy n−1

〈
log Z

†
n(β|χ)

〉
π

via
annealing (as in [10, 75]) or a Morita approximation.

We review some specific applications of these ideas to obtaining upper bounds on the
quenched average free energy next.

3.2.1. Application of the Morita approximation to copolymer adsorption. A first moment
Morita approximation was developed by Orlandini et al [96] for random copolymer adsorption
at a surface. For this problem it was assumed that colours are assigned to the vertices
independently and with identical probabilities so that π(χ) = ∏n

i=1 pχi (1 − p)1−χi where
p is the probability that a vertex gets colour A. The constraints of equation (3.18) then
become ∑

χ∈{0,1}n

∑
ω∈�n

ρ(ω, χ)(χi − p) = 0 (3.27)

for i = 1, . . . , n. V (ω|χ) for this problem can be expressed as α
∑n

i=1 χi�i(ω) where
�i(ω) = 1 if the ith vertex of ω is in the hyperplane z = 0 and 0 otherwise. To find the
Morita approximation then, we use the problem (V) viewpoint and minimize with respect to
the λis. The constraints from equation (3.27) can be relaxed further by taking λi = λ for all
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i = 1, . . . , n; this is equivalent to constraining the average
〈∑n

i=1 χi

〉
ρ

to be np. With this
constraint, the goal is to minimize

log Ẑn(λ) ≡ −λnp + log
∑

χ

∑
ω

π(χ) eV (ω|χ)+λ
∑n

i=1 χi (3.28)

with respect to λ. Because of the product forms of π(χ) and eV (ω|χ)+λ
∑n

i=1 χi ,

log Ẑn(λ) = −λnp + log
∑

ω

n∏
i=1


 1∑

χi=0

pχi (1 − p)1−χi e(α�i(ω)+λ)χi




= −λnp + log
∑

v

wn(v)(1 − p + p eα+λ)v(1 − p + p eλ)n−v, (3.29)

where wn(v) is the number of conformations ω ∈ �n having v + 1 vertices in the hyperplane
z = 0, i.e.

∑n
i=1 �i(ω) = v. This leads to

log Ẑn(λ) = −λnp + n log(1 − p + p eλ) + log Zh
n(γ ), (3.30)

where Zh
n(γ ) =∑v wn(v) eγ v is the partition function for the homopolymer adsorption model

defined for �n and

γ = log

(
1 − p + p eα+λ

1 − p + p eλ

)
. (3.31)

To minimize log Ẑn(λ) we set ∂ log Ẑn(λ)/∂λ = 0 and obtain

n−1 ∂ log Zh
n(γ )

∂γ
= (1 − eλ)(1 − p + p eα+λ)

eλ(eα − 1)
. (3.32)

For wn(v) = c+
n(v) (i.e. �n is the set of half space self-avoiding walks in Z

d starting
at the origin) it is known [43] that limn→∞ n−1 log Zh

n(γ ) = κd (a constant) for all
γ � αc (as defined in equation (2.18)) so that in the infinite n limit the left-hand side of
equation (3.32) is zero for γ � αc and hence λ = 0 for γ � αc. λ = 0 and γ � αc in
equation (3.31) implies that for α � αa (as defined in equation (3.4)) the Morita approximation
to the quenched probability distribution is given by ρa1(ω, χ) from equation (3.25), i.e. the
annealed probability distribution. In order to determine the properties of the solution for
α > αa , it would be necessary to know more information about n−1 log Zh

n(γ ), with �n the
set of all half-space self-avoiding walks, than is currently available.

The situation is improved, however, for the case of �n being either the set of Dyck or
Motzkin paths since in principle n−1 log Zh

n(γ ) is known via the appropriate two variable
generating functions; for the case of Motzkin paths the appropriate generating function is
given by M(x, z) as in equation (2.20). To explain this further, we focus on the case that �n is
the set of Dyck paths and hence |�n| = dn. The homopolymer adsorption generating function
D(x, z) is defined to be

D(x, z) =
∑

n

zn
∑

v

dn(v)xv =
∑

n

z2nZh
2n(log(x)) (3.33)

where dn(v) is the number of n-edge Dyck paths with v + 1 vertices in the line y = 0. By
analogy with the derivation of equation (2.20), it can be shown that

D(x, z) = 1

1 − xz2D(1, z)
(3.34)

where

D(1, z) = 1 − √
1 − 4z2

2z2
. (3.35)
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Consider any even integer n (recall that dn = 0 for n odd). For an arbitrary set of walks, the
simplifying assumption that λi = λ for all i = 1, . . . , n was made to obtain equation (3.28).
Note, however, for ω a Dyck path �2j−1(ω) = 0 for all j � 1, i.e. only even labelled vertices
can lie in y = 0. Hence for Dyck paths there are clearly two different classes of vertices (those
that can lie in y = 0 and those that cannot) and thus it is an unnecessary oversimplification to
set λi = λ for all i = 1, . . . , n. Instead, the constraints from equation (3.27) are now relaxed
by taking λ2j = λ for all j = 1, . . . , n/2 and λ2j−1 = λ1 for all j = 1, . . . , n/2; this is
equivalent to the constraints

〈∑n/2
i=1 χ2i

〉
ρ

= np/2 and
〈∑n/2

i=1 χ2i−1
〉
ρ

= np/2. For even n, a
Morita approximation can then be obtained by minimizing

log Z̃n(λ, λ1) = −λnp

2
− λ1np

2
+ log
∑

χ

∑
ω

π(χ) eV (ω|χ)+λ
∑n/2

i=1 χ2i+λ1
∑n/2

i=1 χ2i−1

= −λnp

2
− λ1np

2
+

n

2
log(1 − p + p eλ1) +

n

2
log(1 − p + p eλ) + log Zh

n(γ ),

(3.36)

with γ and Zh
n as defined in equations (3.31) and (3.30) with wn(v) = dn(v). Minimizing with

respect to λ1 leads to λ1 = 0. Hence the Morita approximation can be obtained by minimizing

log Z̃n(λ) = −λnp/2 + (n/2) log(1 − p + p eλ) + log Zh
n(γ ) (3.37)

with respect to λ. (Note that this is equivalent to the approximation that would be obtained
by assuming that only even vertices are coloured [96].) Setting ∂ log Z̃n(λ)/∂λ = 0 results
now in

n−1 ∂ log Zh
n(γ )

∂γ
= (1 − eλ)(1 − p + p eα+λ)

2eλ(eα − 1)
. (3.38)

In principle, Zh
n can be obtained by expanding D(x, z) as a power series in z and then Zh

n

is the coefficient of zn. With Zh
n , equation (3.38) can then be used to solve for λ in terms of

n and p. Our main interest however is to investigate the limiting Morita approximation free
energy given by

lim
n→∞(2n)−1 min

λ
log Z̃2n(λ) � min

λ
lim

n→∞(2n)−1 log Z̃2n(λ) (3.39)

which is an upper bound on the limiting quenched average free energy for the Dyck path model
of random copolymer adsorption. If we introduce the grand canonical partition function

H(λ, z) =
∑

n

Z̃n(λ)zn (3.40)

then for a given λ, the radius of convergence of H, zc(λ), is such that

−log ẑc(λ) = lim
n→∞(2n)−1 log Z̃2n(λ). (3.41)

Hence maximizing the radius of convergence zc(λ) with respect to λ will give an upper bound
on the limiting quenched average free energy for the Dyck path model of random copolymer
adsorption. From equation (3.37), it is clear that

H(λ, z) =
∑

n

[
z e−λp/2

√
1 − p + p eλ

]2n
Zh

2n(γ ) = D
(
eγ , z e−λp/2

√
1 − p + p eλ

)
. (3.42)

This with equation (3.34) gives

H(λ, z) = 2(1 − p + p eλ)

(1 − p + (2 − eα)p eλ) + (1 − p + p eα+λ)
√

1 − 4z2(1 − p + p eλ) e−λp
. (3.43)
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(Note that this is equivalent to equation (3.31) of [96] upon setting p = 1/2, eα = a, eλ = L

and replacing z2 by z.) Thus H(λ, z) has a square root singularity when its denominator is
positive and z = (1/2) eλp/2(1 − p + p eλ)−1/2 and a simple pole along the curve

z2 = eλ(p+1)p(eα − 1)

(1 − p + p eα+λ)2
for z � (1/2) eλp/2(1 − p + p eλ)−1/2. (3.44)

The simple pole and square root singularity coalesce when (1 − p + (2 − eα)p eλ) = 0. Thus
for given p, λ and α,

ẑ2
c(λ) =




(1/4) eλp(1 − p + p eλ)−1 1 − p + (2 − eα)p eλ � 0

eλ(p+1)p(eα − 1)

(1 − p + p eα+λ)2
1 − p + (2 − eα)p eλ < 0

(3.45)

and we wish to maximize ẑ2
c(λ) as a function of λ. For α � log 2, 1 − p + (2 − eα)p eλ � 0

for all choices of λ and p and hence

ẑ2
c(λ) = (1/4) eλp(1 − p + p eλ)−1. (3.46)

Maximizing this with respect to λ results in λ = λ̂ = 0 and ẑc(λ̂) = 1/2, indicating that the
system is in the desorbed phase. Otherwise, i.e. for α > log 2,

ẑ2
c(λ) =




(1/4) eλp(1 − p + p eλ)−1 eλ � 1 − p

p(eα − 2)

eλ(p+1)p(eα − 1)

(1 − p + p eα+λ)2
eλ >

1 − p

p(eα − 2)

. (3.47)

For eα � 2 + (1 − p)/p, the maximum occurs again at λ̂ = 0 and ẑc(λ̂) = 1/2, while for
eα > 2 + (1 − p)/p, the maximum occurs at λ = λ̂ where

eλ̂ = p + 1

eαp
(3.48)

and

lim
n→∞(2n)−1 log Ẑ2n(λ̂) = −log ẑc(λ̂)

= −1
2 (p + 1) log(p + 1) + 1

2p log p + 1
2 (p + 1)α + log(2) − 1

2 log(eα − 1).

(3.49)

Differentiating the above equation with respect to α yields the mean density of A-vertices in
the surface:

∂

∂α
(−log ẑc(λ̂)) = 1

2
(p + 1) − eα

2(eα − 1)
. (3.50)

Since for α � log(2 + (1 − p)/p) the mean density of A-vertices in the surface is 0 and
otherwise it is greater than 0, the adsorption transition occurs at α = log(2 + (1−p)/p). Note
also that as α goes to infinity, the mean density of A-vertices in the surface approaches p/2
which coincides with what is expected for the quenched model.

For p = 1/2 the adsorption transition occurs at α = log(3) and for α > log(3)

lim
n→∞(2n)−1 log Ẑ2n(λ̂) = −log ẑc(λ̂) = −3

4 log(3) + 3
2 log 2 + 3

4α − 1
2 log(eα − 1) (3.51)

and the density of A-vertices is given by 3
4 − eα

2(eα−1)
.

The corresponding calculation for Motzkin paths can be carried out in a similar way.
We show the α-dependence of the free energy (when p = 1/2) in figure 5 together with the
free energies for the homopolymer and the annealed approximation for comparison. Note
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Figure 5. The free energy for adsorbing Motzkin paths, for the homopolymer (top curve), the
annealed approximation when p = 1/2 (middle curve) and the Morita approximation when
p = 1/2 (bottom curve).

that (i) the annealed and Morita approximations are singular at the same value of α, so they
both have the same adsorption transition and (ii) the free energies for the homopolymer and
annealed models have parallel asymptotes with unit slope, while the free energy for the Morita
approximation has an asymptote with slope 1/2.

3.2.2. Application of the Morita approximation to localization. A similar first moment Morita
approximation was developed by Orlandini et al [96] for random copolymer localization. For
this problem it is again assumed that colours are assigned to the vertices independently and
with identical probabilities so that π(χ) =∏n

i=1 pχi (1−p)1−χi where p is the probability that
a vertex gets colour A. The constraints of equation (3.18) again become as in equation (3.27).
V (ω|χ) for this problem can be expressed as

∑n
i=1 γ�i(ω) + α�+

i (ω)χi + β(1 − �i(ω) −
�+

i (ω))(1 − χi) where �+
i (ω) = 1 if the ith vertex of ω is in the upper half hyperplane,

z > 0 and 0 otherwise and �i(ω) is as defined in the last section. As before, to find a first
moment Morita approximation we use the problem (V) viewpoint and minimize log Ẑn(λ) in
equation (3.28) with respect to λ.

We focus on the case that |�n| is the set of n-step bilateral Dyck paths. Let d2n(vo, vw, vi)

denote the number of bilateral Dyck paths of length 2n with vo, vw and vi + 1 vertices in the
upper half-plane (y > 0), the lower half-plane (y < 0) and the interfacial line (y = 0) of Z

2

respectively. The generating function of these paths is then given by

B(z, a, b, c) =
∑
n�0

z2n
∑

vo,vw,vi

d2n(vo, vw, vi)a
vobvwcvi (3.52)
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and a standard factorization argument gives

B(z, a, b, c) = 1 + z2acB(z, a, b, c)D(1, az) + z2bcB(z, a, b, c)D(1, bz)

= 2ab

2ab − c(a + b) + bc
√

1 − 4z2a2 + ac
√

1 − 4z2b2
, (3.53)

where the zeroth vertex only contributes a factor of 1 by convention and D(1, z) is the
generating function for Dyck paths from equation (3.35). If we set a = eα, b = eβ and
c = eγ , then B is the generating function for the homopolymer localization problem. Note
that in B, z is conjugate to the length of the Dyck path, while in the corresponding generating
function in [96], z is conjugate to the half-length of the Dyck path.

For the bilateral Dyck path random copolymer model of localization (for simplicity we
no longer distinguish between even and odd vertices) the constraints from equation (3.27)
are relaxed by taking λj = λ for all j = 1, . . . , 2n; this is equivalent to the constraint〈∑2n

i=1 χi

〉
ρ

= 2np. The first moment Morita approximation can then be obtained by
minimizing

log Ẑ2n(λ) = −2λnp + log
∑

χ

∑
ω

π(χ) eV (ω|χ)+λ
∑2n

i=1 χi . (3.54)

Define the grand canonical partition function

H(λ, z) =
∑
n�0

z2nẐ2n(λ) = B
( z

eλp
, â, b̂, ĉ

)

= 2âb̂

2âb̂ − ĉ(â + b̂) + ĉb̂

√
1 − 4z2â2

e2λp + ĉâ

√
1 − 4z2b̂2

e2λp

(3.55)

where â = 1 − p + p eα+λ, b̂ = (1 − p) eβ + p eλ and ĉ = eγ (1 − p + p eλ), and
equation (3.55) is obtained using equations (3.52), (3.53) and (3.54). We are interested
in optimizing the radius of convergence, ẑc(λ), of H, and in particular minimizing

−log ẑc(λ) = lim
n→∞(2n)−1 log Ẑ2n(λ) (3.56)

in order to obtain an upper bound on the limiting quenched average free energy for bilateral
Dyck paths.

Orlandini et al [96] have investigated this in detail for γ = 0 and we generalize their
results to γ � 0 next. For this case, H(λ, z) has the two square root singularities when
z = z1(λ) and z2(λ) where

z1(λ) = eλp

2â
= eλp

2(1 − p + p eα+λ)
(3.57)

z2(λ) = eλp

2b̂
= eλp

2((1 − p) eβ + p eλ)
(3.58)

and, when z � min{z1(λ), z2(λ)} and ĉ(â + b̂) − 2âb̂ � 0, a simple pole at z = z3(λ) where

z2
3(λ) = e2λp(ĉ − â)(ĉ − b̂)[ĉ(â + b̂) − âb̂]

ĉ2(ĉ(â + b̂) − 2âb̂)2
. (3.59)

The condition ĉ(â + b̂) − 2âb̂ � 0 is equivalent to the condition

(1 − p)(1 − eβ)

(1 − p) eβ + p eλ
+

p(1 − eα) eλ

1 − p + p eα+λ
� 2(e−γ − 1). (3.60)
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Hence for any fixed γ � 0 and fixed α � 0, β � 0 (i.e. in the first quadrant of the (α, β)-plane)
ĉ(â + b̂) − 2âb̂ < 0 for all choices of λ and thus ẑc(λ) = min{z1(λ), z2(λ)} so that

ẑc(λ) =




z1(λ) eλ � (1 − p)(eβ − 1)

p(eα − 1)

z2(λ) eλ <
(1 − p)(eβ − 1)

p(eα − 1)

(3.61)

which is a continuous function of λ. To find the maximum of log ẑc(λ) with respect to λ we
consider

∂ log ẑc(λ)

∂λ
=




p(1 − p)(1 − eα+λ)

1 − p + p eα+λ
eλ >

(1 − p)(eβ − 1)

p(eα − 1)

p(1 − p)(eβ − eλ)

(1 − p) eβ + p eλ
eλ <

(1 − p)(eβ − 1)

p(eα − 1)

(3.62)

which is discontinuous and undefined at eλ = (1−p)(eβ−1)

p(eα−1)
. There are thus three potential

locations (i.e. λ values) for a maximum of log ẑc(λ), λa = −α, λb = β and λc = log (1−p)(eβ−1)

p(eα−1)

and the actual value of maxλ log ẑc(λ) is dependent on the location of λc relative to λa and
λb. Since we are assuming α and β are non-negative (so that λb � λa) and since ẑc(λ) is
continuous, three cases result and the limiting free energy is given by

−max
λ

log ẑc(λ) =




β(1 − p) + log 2 λb < λc

log(eα+β − 1) − p log(eβ − 1) − (1 − p) log(eα − 1)

+ (1 − p) log(1 − p) + p log p + log 2 λa � λc � λb

αp + log 2 λa > λc.

(3.63)

The conditions on the right-hand side correspond to three distinct regions of the first quadrant
of the (α, β)-plane and these regions are divided by the two boundary curves λb = λc and
λa = λc, i.e.

β = log(1 − p) − log(1 − p eα) (3.64)

and

β = −log(1 − p) + log(1 − p e−α). (3.65)

To see that these curves correspond to phase boundaries, we consider various partial derivatives
of the limiting free energy. Differentiating with respect to β (α) yields the expected proportion
of walk vertices which have colour B (A) and are in the half-plane y < 0 (y > 0), and
differentiating with respect to γ yields the expected proportion of walk vertices that lie in
the interface y = 0. In the first region (λb < λc), taking these derivatives of equation (3.63)
indicates that there is a zero density of vertices in the interface and in y > 0, and that the
expected proportion of vertices that are coloured B and in y < 0 is 1 − p which is also the
expected proportion of vertices that are coloured B; hence in this regime the walk is delocalized
into the half-plane y < 0. Similarly in the third region (λa > λc), the walk is delocalized
into the half-plane y > 0. For the second region (−α = λa � λc � λb = β), there is no
γ dependence for the limiting free energy and hence the expected fraction of vertices in the
interface is zero and the walk is not considered to be localized at the interface. Differentiating
with respect to β or α yields for this region

−∂ log ẑc(λc)

∂β
= p(1 − p) eβ(eα+λc − 1)

(eβ − 1)(1 − p + p eα+λc )
(3.66)
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−∂ log ẑc(λc)

∂α
= p(1 − p) eα(eβ − eλc )

(eα − 1)((1 − p) eβ + p eλc )
(3.67)

which are positive quantities for −α < λc < β and hence there is both a nonzero fraction of B
vertices in the half-space y < 0 and A vertices in y > 0 for this region. This can be interpreted
as a region in which two thermodynamic phases coexist [96]. The phase boundaries in the
(α, β)-plane dividing the two delocalized phases from the coexistence region are thus given by
the two equations (3.64) and (3.65). Crossing from one of the delocalized phases to the other
through the origin corresponds to a first order phase transition [96]. Otherwise, crossing from
one of the delocalized phases into the coexistence region is a second order phase transition (it
can be shown that an appropriate second derivative is discontinuous at the phase boundary).
For the actual limiting quenched average free energy of localization of bilateral Dyck paths,
it is known that there are two delocalized phases with free energies β(1 − p) + log 2 and
αp + log 2 (see figure 2). Since the delocalized free energy in the Morita approximation,
derived above, is the same as the expected actual limiting quenched average delocalized
free energy, and since otherwise the Morita approximation free energy is an upper bound on
the actual limiting quenched average free energy, the phase boundaries predicted here provide
bounds on the true phase boundaries. However for the quenched model it is known that the
two delocalized phases are separated in the first quadrant by a localized phase; thus the path
properties predicted by this Morita approximation in this quadrant are different from those
of the quenched system. (Note that the lack of a localized phase in this quadrant cannot be
remedied by distinguishing between even and odd vertices.)

Next we consider fixed γ � 0 and α < 0, β < 0 (i.e. in the third quadrant of the
(α, β)-plane). In this case both sides of the inequality (3.60) are always positive and hence

ẑc(λ) =
{

min{z1(λ), z2(λ)} ĉ(â + b̂) − 2âb̂ < 0
min{z1(λ), z2(λ), z3(λ)} ĉ(â + b̂) − 2âb̂ � 0.

(3.68)

Determining the possible locations for the maximum of ẑc(λ) is now complicated by the fact
that determining the location of the maximum of z3(λ) involves solving a quintic equation.
The case γ = 0 and p = 1/2 has been studied in detail by Orlandini et al [96] however, and
they are able to determine the phase boundaries by establishing that ∂ log ẑc(λ)

∂λ
is continuous

and arguing that thus the two phase boundaries in this (third) quadrant can be determined by
setting z3(−α) = z1(−α) (the maximum value of z1(λ)) and z3(β) = z2(β) (the maximum
value of z2(λ)). When ẑc(λ) = z3(λ), the corresponding limiting free energy can be shown
to correspond to a localized phase and the transition from a delocalized phase to the localized
phase is second order [50, 96].

Iliev et al [50] have extended arguments of this type to explore the Morita approximation
for γ 	= 0. When γ < 0 the phase boundaries in the (α, β)-plane meet only at the origin. This
agrees with the results of [75] for the self-avoiding walk model of the quenched system. When
γ > 0 the phase boundaries have no common point in the (α, β)-plane. For the self-avoiding
walk model of the quenched system it is only known [75] that this is true for γ sufficiently
larger than zero, and not for all positive γ . See section 2.2.

There is a numerical study for γ = 0 [16], see section 4.2, which suggests that for the
quenched system there is a difference in the order of the phase transition in the first and in the
third quadrants, which suggests a tricritical point on the phase boundary, probably at the origin.
Iliev et al [50] have investigated this in the Morita approximation and they found non-analytic
points on the phase boundary, at the origin when γ = 0, in the third quadrant when γ < 0
and in the first quadrant when γ > 0. (Of course, when γ 	= 0 there are symmetry related
non-analytic points on the two phase boundaries.)
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3.2.3. Application of the Morita approximation to copolymer collapse. It is very difficult to
derive any results about random copolymer collapse by rigorous methods and essentially all
our knowledge of the subject comes from numerical approaches (see section 4.2) and from
approximate methods. Trovato et al [123] have used the Morita approximation to investigate a
lattice model of random copolymer collapse where the Hamiltonian is based on the interaction
of monomers with surrounding solvent molecules (see also [32]) and where the monomers
have random hydrophilicity parameters. The model is a self-avoiding walk on a lattice. With
the ith vertex of the walk (or monomer) is associated a random variable χi which reflects the
energy of interaction of this monomer with a neighbouring solvent molecule. All vertices of
the lattice which are not visited by the walk (i.e. which are not monomers) are regarded as
being solvent molecules. If �n is the set of n-edge self-avoiding walks, for each ω ∈ �n we
write zi = zi(ω) for the number of vertices of the lattice which are first neighbours of the ith
vertex of the walk and which are not occupied by vertices of the walk. Then the Hamiltonian
is given by

H(ω|χ) = −
∑

i

χizi . (3.69)

The χi are independent Gaussian distributed random variables with mean µ and variance σ 2.
In the annealed approximation we are interested in the expectation of the partition function

〈Zn(β|χ)〉 =
∑
ω∈�n

〈
eβ
∑

i χi zi
〉

=
∑
ω∈�n

eβµ
∑

i zi+(β2σ 2/2)
∑

i z2
i . (3.70)

To implement a first moment Morita approximation the authors define the generalized
partition function

Z(1)
n (β|χ, h) =

∑
ω∈�n

e[β
∑

i χi zi−βh(
∑

i χi−nµ)] (3.71)

where h is a Lagrange multiplier to be chosen to ensure that〈∑
i

χi

〉/
n = µ. (3.72)

This leads to an expression for the expectation of the partition function of the form〈
Z(1)

n

〉 = ∑
ω∈�n

enβ0+β1
∑

i zi+β2
∑

i z2
i (3.73)

where

β0 = β2σ 2h2/2, β1 = βµ − β2σ 2h (3.74)

and

β2 = β2σ 2

2
. (3.75)

Comparing (3.70) and (3.73) we see that (3.70) could be written in the form of (3.73) with
β0 = βann

0 = 0, β1 = βann
1 = βµ and β2 = βann

2 = β2σ 2/2. Since the value of β0 is
essentially irrelevant the expectations of the partition functions in equations (3.70) and (3.73)
differ only in the β1 terms. In equation (3.73) the value of h has to be chosen to satisfy the
condition (3.72) (or equivalently to minimize n−1 log〈Z(1)

n 〉 with respect to h).
We now summarize their main results. For the annealed case when µ > 0 (i.e. the

molecule is on average hydrophilic) the polymer is expanded at all temperatures. (Essentially
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the solvent is good at all temperatures.) When µ  0 (so that on average the molecule
is strongly hydrophobic) the polymer is expanded at high temperatures and goes through a
theta transition (which is second order) to a collapsed state as the temperature is lowered. At
lower temperatures it goes through a second (this time first order) transition to an expanded
state, so that the polymer is expanded at low temperatures. Presumably in the annealed
approximation the polymer pays the combinatorial penalty (i.e. the random variables are in the
tail of their distribution) to optimize the energy. This is reminiscent of the poor performance
of the annealed approximation for the adsorption problem at low temperatures, discussed in
section 3.1.

What happens when we fix the first moment in the Morita approximation? This depends
on how hydrophobic the chain is (on average). That is there is a number µm < 0 such
that the behaviour depends on whether µ/σ is less than or greater than µm. If µ/σ < µm

(i.e. the molecule is very hydrophobic) at high temperatures the polymer is expanded. As
the temperature is decreased the polymer undergoes a second order collapse transition to a
collapsed phase. At an even lower temperature there is a second phase transition below which
part of the polymer is expanded and part is collapsed. If µ/σ > µm so that the polymer,
on average, is hydrophobic but not so strongly hydrophobic, the polymer is expanded at high
temperatures. As the temperature is lowered the system goes through a phase transition to a
state where part of the polymer is expanded and part is collapsed. Again at low temperatures
the system seems to be paying a combinatorial penalty to optimize its energy. Because of the
constraint on the first moment (3.72) not all monomers can be hydrophilic but the sequence
of monomers can be arranged to give long strings of hydrophobic monomers and long strings
of hydrophilic monomers, so that part of the chain can be collapsed and part expanded at low
temperatures. This seems related to the behaviour found in the treatment of localization (in
the first quadrant of the (α, β)-plane), described in section 3.2.2.

Trovato et al [123] also investigated fixing the variance of the distribution by introducing
a second Lagrange multiplier. That is, they introduced the additional constraint∑n

i=1

〈
χ2

i

〉
n

= σ 2 + µ2. (3.76)

The general behaviour is similar to that found with only the first moment constraint. This is
because there is still no control over correlations in the sequence {χi} so it is still possible to
have long runs of hydrophilic monomers and hydrophobic monomers, leading to the collapse
of parts of the chain, and expansion of other parts, at low temperatures. Trovato et al discuss
the idea of directly controlling correlations in the sequence {χi}, but point out the difficulties
in implementing this scheme.

3.3. The replica trick

For almost any interesting problem the explicit calculation of the quenched average free energy,
〈log Zn〉, is impossible. We saw in section 3.1 that the calculation of the annealed free energy,
log〈Zn〉, is often relatively easy because it only involves the expectation of the first moment
of the partition function. The replica trick relies on the identity

lim
N→0

ZN
n − 1

N
= log Zn (3.77)

which follows from

ZN
n − 1 = eN log Zn − 1

= N log Zn + (N log Zn)
2/2 + · · · (3.78)
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after dividing by N and taking the limit N → 0. In principle, to apply the replica trick method,
one calculates the expectations of the moments of the partition function,

〈
ZN

n

〉
, for arbitrary

integer N, analytically continues to real values of N, and then takes the N → 0 limit. In
practice this scheme is difficult to execute and some approximations are necessary to complete
the calculation. Good descriptions can be found in [7, 17, 26, 111].

As an example consider a self-avoiding walk model of random copolymer adsorption at
an impenetrable surface. The underlying model of the conformation of the polymer is a self-
avoiding walk on a lattice where the walk starts in a defined plane and is confined to lie in or on
one side of this plane. Only vertices in the defined plane contribute to the energy. So far this is
similar to the model considered in section 2.1. Suppose that each vertex i = 1, 2, . . . , n has
an associated random variable χi and that the χi are independent Gaussian random variables
so that each χi has probability density function

p(x) = 1√
2πσ

exp[−(x − µ)2/2σ 2]. (3.79)

The random variable χi measures the strength of the interaction of the ith vertex with the
surface when the vertex is in the surface plane. When µ > 0 there is a net attraction to the
surface, when µ < 0 there is a net repulsion and when µ = 0 there is no net interaction with
the surface.

We can write the partition function as

Zn(α|χ) =
∑

ω

exp

[
α

n∑
i=1

�iχi

]
(3.80)

where the sum runs over all walks ω of length n and �i ≡ �i(ω) is 1 if the ith vertex of ω is
in the surface plane and zero otherwise. The Nth power of the partition function is then given
by

Zn(α|χ)N =
∑
ω1

∑
ω2

· · ·
∑
ωN

exp


α n∑

i=1

χi

N∑
j=1

�
j

i


 (3.81)

where �
j

i ≡ �i(ωj ) and the {ωj , j = 1, 2, . . . , N} are referred to as replicas. That is, they
are different realizations of the system with the same random variables {χi, i = 1, 2, . . . , n}.
Taking expectations with respect to the χi we obtain

〈Zn(α|χ)N 〉 =
∑
ω1

∑
ω2

· · ·
∑
ωN

n∏
i=1

∫
exp


αxi

N∑
j=1

�
j

i


p(xi) dxi

=
∑
ω1

∑
ω2

· · ·
∑
ωN

n∏
i=1

exp
[
αµDi + α2(σ 2/2)D2

i

]
, (3.82)

where Di = �1
i + · · · �N

i . The term D2
i = (�1

i + · · ·�N
i

)2
in the exponent can be written as

(
�1

i + · · · �N
i

)2 =
N∑

j=1

(
�

j

i

)2
+

N∑
j=1

∑
k 	=j

�
j

i �
k
i . (3.83)

The first term is what we would have in the annealed approximation and the second ‘overlap’
term is a measure of the importance of the correction to the annealed approximation [6, 7].

One can write down a continuum version of (3.82) [111]. 〈Zn(α|χ)N 〉 can then be
thought of as the probability amplitude of a quantum mechanical system of N particles. The
particles are not independent and their interaction is related to the overlap term. The quantum
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mechanical problem cannot be solved exactly but the techniques used for approximate solution
of the Schrödinger equation can be used to derive approximate information about 〈Zn(α|χ)N 〉
[111].

The replica method has been used to study adsorption of a random copolymer at an
impenetrable surface [38, 111], localization at an interface [13, 17, 31, 112, 122] and collapse
of a random copolymer [6, 7, 88, 89]. The qualitative behaviour in the adsorption case is very
similar to that of the models described in section 2.1. In the case of localization the qualitative
results about the nature of the transition and the distinction between the cases of asymmetric
and symmetric interactions [31, 122] are in agreement with the rigorous results described in
section 2.2. A comparison of the random and periodic cases is given in [17].

4. Numerical topics

Although a good deal can be learned by the kinds of rigorous arguments outlined in
sections 2.1 and 2.2 and by the approximate methods described in section 3, many questions
remain. To some extent these can be answered by numerical approaches. In this section
we briefly describe three numerical approaches which have proved useful, emphasizing the
additional problems introduced by quenched randomness. Then we discuss the application
of these methods to the adsorption, localization and collapse problems and highlight some
particular results. There have been many numerical studies of these problems and we make
no attempt at an exhaustive coverage.

4.1. Numerical methods

4.1.1. Exact enumeration and series analysis. Exact enumeration and series analysis has
proved to be a very useful numerical tool for investigating a wide variety of lattice models,
including various polymer problems. We first recall the idea for a homopolymer problem. For
a given set of conformations �n, one calculates the required information exactly for all n � N

where, in three dimensions, N is typically of the order of 20, but can be much larger in two
dimensions [21, 61]. This information could be a metric property such as the mean-square
radius of gyration, or a thermodynamic property such as the free energy or heat capacity. In
general the value of the property will depend on the temperature and on the Hamiltonian being
considered. The key thing is that it is relatively easy to determine exactly provided that we have
information about every member of �n. The method gives exact values of the property being
considered for every n � N . Of course, one is primarily interested in the large-n behaviour.
Suppose that a functional form is available which depends on some parameters whose values
are unknown. Then one can use the exact data for n � N to estimate the values of these
parameters. Many methods of series analysis are available and we shall not describe them
here. Similarly many ingenious methods have been developed, especially in two dimensions
[21, 61], for enumerating the conformations.

For random copolymers there is an additional step since the property must be averaged
over all colourings, or over all monomer sequences. If there are two kinds of monomers
there are 2n monomer sequences of length n so the property must be calculated for each of
these 2n sequences and then averaged. For some problems this has been carried out exactly
[34, 52, 63, 78, 83] while for others Monte Carlo methods have been used to choose a random
sample of sequences and to average only over this sample [34, 84]. Both approaches have
their advantages and disadvantages. Some applications to specific problems and models will
be discussed in section 4.2.
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4.1.2. Monte Carlo methods. The Monte Carlo method is one of the workhorses of statistical
mechanics of polymers. When all else fails Monte Carlo methods can usually be used to derive
some information about a system. For linear polymers without quenched randomness there are
excellent algorithms available for generating samples of self-avoiding walks, with and without
energy terms. The literature is vast and we shall not try to review it here. One extremely
effective algorithm which we shall mention is the pivot algorithm, originally invented by Lal
[70] and analysed in detail by Madras and Sokal [73]. When there are no energy terms (apart
from the self-avoiding constraint) one is interested in generating a sample of self-avoiding
walks (each with n edges), all of which have the same probability of occurence. One general
idea is to define a Markov chain on the set of n-edge self-avoiding walks, with uniform unique
limit distribution, and generate a realization of the Markov chain. This gives a correlated
sample of self-avoiding walks. One strategy is to try to minimize correlations by constructing
a Markov chain which proposes large scale changes in the self-avoiding walks so that, when
such a change is accepted, the new walk (i.e. the next state of the Markov chain) is very
different from the previous walk (i.e. the previous state of the Markov chain) and correlation
times are small. This is the aim of the pivot algorithm. The idea is as follows. Choose a vertex
(of degree 2) of the self-avoiding walk, uniformly at random. Disconnect the walk into two
subwalks at this vertex and apply a randomly chosen symmetry operation of the lattice to one
of the subwalks. Reconnect the two subwalks at the same vertex. If this new structure is a
self-avoiding walk, it is accepted as the next state of the Markov chain. Otherwise the current
state is also the next state. A good description, with a proof that the Markov chain is ergodic
and arguments about the nature of the correlations, can be found in [72].

This method works beautifully in the absence of energy terms but, when there are
strong interactions (e.g. at low temperature) the method suffers from quasi-ergodic problems.
Although the Markov chain is ergodic (so that any conformation can eventually be reached
from any other conformation) the system can get trapped for long periods in regions of the
conformation space and make transitions between regions only rarely. One can improve the
situation by adding other moves to the Markov chain, including local moves which only make
small changes in the self-avoiding walk but are more readily accepted. Recently more powerful
improvements have become available. One of these, originally invented by Geyer [33] in the
statistics literature, has proved to be very powerful in this kind of situation. Imagine that we
have a system that we want to investigate at a variety of temperatures. Suppose that, using
the pivot algorithm (or some modification or extension), there is rapid convergence at high
temperatures but slow convergence at low temperatures. Run a set of Markov chains in parallel
at various temperatures, including a high temperature where convergence is fast and, from time
to time, swap conformations between two Markov chains at two adjacent temperatures, with
a probability chosen to make the overall Markov chain (i.e. the union of the Markov chains
at the different temperatures) have a limit distribution which is the product of the Boltzmann
distributions at the individual temperatures. This means that

(i) the set of conformations at a particular temperature can be analysed as though it had been
produced at that temperature, and

(ii) convergence is much faster at the low temperatures since the conformations will have
spent some time at higher temperatures where convergence is guaranteed to be fast.

(Note that the Markov chains at different temperatures are correlated and this correlation should
be taken into account when estimating errors.) An alternative to this approach is to use umbrella
sampling in which one samples from a distribution other than the Boltzmann distribution,
designed to speed up convergence and avoid quasi-ergodic problems [121]. The two
methods are compared for the treatment of homopolymer collapse in [119]. See also [125].
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Now we need to introduce quenched randomness. The scheme described above will work
for a copolymer with a fixed sequence χ of monomers. So one needs to choose (at random)
a sample of monomer sequences and carry out the above procedure (or another effective
Monte Carlo procedure) for each monomer sequence, and then average over the monomer
sequences. One might expect that it would be necessary to have an enormous sample of
monomer sequences to obtain good statistics but the situation is saved by self-averaging,
which is discussed in detail in section 5. As n increases, for many observables the distribution
becomes narrower so that the sample size required remains modest and the approach is viable.
Some applications will be discussed in section 4.2.

Although we have chosen to describe the scheme in the context of the pivot algorithm
and the sampling scheme invented by Geyer, this is not necessary. Any Monte Carlo scheme
which is effective for the homopolymer problem (e.g. the PERM algorithm [35]) should also
work for a copolymer with fixed monomer sequence (see e.g. [6, 49]). Then one samples over
a randomly chosen set of monomer sequences and self-averaging will ensure that the required
sample size (of monomer sequences) does not grow too rapidly as n increases.

4.1.3. Transfer-matrix methods. Transfer-matrix techniques have been applied to the study
of self-avoiding walk models since at least the 1980s [23, 64, 104] and the general theory of
the transfer-matrix approach for studying self-avoiding walks was detailed in 1990 by Alm
and Janson [3]. Basically, for sublattices of Z

d which are finite in all but one direction (e.g.
Bd(L) = {(i1, i2, . . . , id)|ij ∈ Z, 0 � ij � L, j = 2, . . . , d, 0 � i1}) and for Hamiltonians
involving only ‘local’ interactions (i.e. nonzero interactions only between vertices within
a fixed finite distance from one another), it is, in principle, possible to obtain an exact
homopolymer model partition function (Zn(L, β)) for an arbitrary walk length n by taking
powers of an N × N matrix, the transfer-matrix, where N depends on the finite dimensions
of the sublattice (L) and the range of the interactions but not on n. The limiting free energy
(limn→∞ n−1 log Zn(L, β)) and other thermodynamic quantities of interest can be obtained in
terms of the eigenvalues and eigenvectors of the transfer-matrix. Furthermore, for the limiting
free energy it can often be proved (depending on the Hamiltonian) that as the finite dimensions
(i.e. L) of the sublattice go to infinity the limiting free energy goes monotonically to the limiting
free energy of the corresponding self-avoiding walk model on the full-lattice [45]. Thus the
sublattice free energies can give bounds on the full-lattice free energies and series analysis
techniques can be used to obtain estimates of the full-lattice free energies. It is also known [64,
124], though, that the limiting values (as L → ∞) of some other quantities, for example some
critical exponents, are not the same as the full-lattice values of these quantities. However,
phenomenological renormalization group ideas have been used successfully to extrapolate
from the sublattice information to the full-lattice [23].

The form of the partition function, Z∗, in equation (3.20) is in a form similar to that for a
homopolymer model if one considers the λCs as interaction energies between groups of vertices
along the walk. Thus the interactions in this case are not ‘local’; however, if one assumed
that λC = 0 for all C which involve vertices that are greater than a prespecified distance
away from one another, then the interactions could be considered to be local. Setting some
of the λCs to zero corresponds to obtaining a Morita approximation. Thus the transfer-matrix
approach described above, for fixed L, can be used to obtain a Morita approximation for the
partition function Z∗ associated with randomly coloured self-avoiding walks in Bd(L). This
was the approach employed by Trovato et al [123] to study the collapse of random copolymers
for d = 2.

Even for the study of non-interacting homopolymer SAWs in Bd(L), there are some
practical limitations of the transfer-matrix approach. In this case, roughly speaking, to get
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the transfer-matrix one needs to determine all possible conformations on a slice of Bd(L),
such as Sd(L, r) = {(i1, i2, . . . , id)|ij ∈ Z, 0 � ij � L, j = 2, . . . , d, r − 1 � i1 � r + 1},
which could be parts of a self-avoiding walk. The number of conformations gives the size
of the transfer-matrix and there is a nonzero element in the transfer-matrix for each pair of
slice conformations, one in Sd(L, r) and the other in Sd(L, r + 1), which are identical in the
part of the two slices which overlap. The number of slice conformations increases roughly
exponentially in WLd−1, where W is the width of the slice. The transfer-matrix approach has
been used to enumerate exactly all self-avoiding walks up to n = 51 [39] and self-avoiding
polygons up to n = 110 [60] in Z

2. The approach is however quite limited for d > 2. When
interactions are introduced then the width W of the slice may have to be increased (roughly to
the distance of the interaction range) so that it is possible to take into account the interaction
term correctly in the transfer-matrix. Thus longer range interactions will result in larger
transfer matrices and hence it will not be possible to go to as large L even for d = 2. In the
work of Trovato et al [123], a Morita approximation for a self-avoiding walk model of random
copolymer collapse with a first moment constraint and a type of second moment constraint was
studied using transfer matrices for L = 2, . . . , 6. A discussion of their conclusions is given
in section 3.2.3. Random walk models also lend themselves naturally to analysis by transfer-
matrices, Grosberg et al [37] used transfer-matrices to study the annealed approximation for
a random walk model of random copolymer localization in R

3 and Derrida and Higgs [24]
used them to study a one-dimensional directed random walk model of random copolymer
collapse.

4.2. Numerical studies of various models for physical problems

4.2.1. The adsorption problem. Balazs et al [5] and Zheligovskaya et al [131] used Monte
Carlo methods to examine the structure of the adsorbed layer of a random copolymer and
compared this to the structure for a homopolymer and for a block copolymer. Both groups
used a self-avoiding walk model in which the vertices are labelled A or B (independently)
so the copolymer has two kinds of monomers. A monomers interact with the impenetrable
surface while B monomers are inert (but cannot pass through the surface). Zheligovskaya et al
[131] estimated the location of the adsorption transition as a function of the proportion of
A monomers. Martin [77] estimated the location of the transition using exact enumeration
methods. Sumithra and Baumgaertner [115] used Monte Carlo methods to look at a similar
model and also estimated the value of the crossover exponent (φ) which describes the shape of
the free energy near the critical temperature for adsorption. They found that φ is the same as for
homopolymer adsorption. (In fact the precise value for homopolymer adsorption is not known
[22, 46] but the evidence seems to be that any difference between the homopolymer and random
copolymer cases is too small to see by numerical methods.) Moghaddam and Whittington
also estimated φ for random copolymer adsorption and came to the same conclusion [82].

These papers are all concerned with adsorption of a random copolymer on a homogeneous
surface. A different, but related case is where a homopolymer adsorbs on a randomly
heterogeneous surface. That is, where the randomness resides in the surface rather than
in the polymer. This case has also been investigated by Monte Carlo methods [81, 82, 114].
If we compare the adsorption of a random copolymer with a fraction p of vertices (A-vertices,
say) which interact with a homogeneous surface, with the adsorption of a homopolymer at a
heterogeneous surface with a fraction p of active sites, we find interesting differences. For
the former case (where the randomness is in the polymer sequence) the fraction of A-vertices
which are in contact with the surface (i.e. the proportion of walk vertices which are A-visits)
goes to p in the low temperature limit. (The system has a degenerate ground state with all
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A vertices in contact with the surface.) For the latter case (where the randomness is in the
surface) the fraction of walk vertices which are coincident with active sites in the surface
seems to go to unity (or, at least, to a value greater than p) when p > pc, the site percolation
threshold of the lattice representing the surface. Provided that p > pc there is a positive
probability for any active site to be in the infinite cluster, so the polymer can use a modest
proportion of monomers to find an infinite cluster of active sites, and then reside entirely
in this cluster. There is disagreement about whether or not φ depends on p for the random
surface case [82, 114]. Several models of adsorption of a random copolymer on a randomly
heterogeneous surface have also been investigated [81].

4.2.2. The localization problem. Various aspects of the localization problem described in
section 2.2 have been studied by exact enumeration techniques and by Monte Carlo methods.
Sommer et al [109] used Monte Carlo methods to study a version of this problem and examined
the radius of gyration perpendicular to the interface, and the mean number of monomers in the
interface as a function of an average interface selectivity parameter. Provided that the interface
selectivity potential was asymmetric (see section 2.2 for a discussion of this point) they found
strong evidence for a localization–delocalization transition. Yeung et al [129] investigated the
effect of correlations in the monomer sequence on the conformation of the copolymer.

Exact enumeration and series analysis techniques have been used [52, 78] to study the self-
avoiding walk model introduced in [78] and described in section 2.2. The model is a randomly
coloured self-avoiding walk on the simple cubic lattice where the plane z = 0 is the interfacial
plane between two immiscible liquid phases, represented as z > 0 and z < 0. There are
a number of rigorous results about the form of the phase boundaries [75, 78] and James
et al [52] estimated the locations of the phase boundaries in the (α, β, γ )-space. (The
parameters α and β measure the energetic advantages for A and B monomers (respectively) to
be in the z > 0 and z < 0 phases, and γ is a measure of the monomer–interface interaction.
See section 2.2 for details.) For γ = 0 the results [78] are in good agreement with Monte
Carlo estimates [16]. The nature of the phase transition in the (α, β)-plane when γ = 0
was also examined in [16]. There are phase boundaries in the first and third quadrants and,
surprisingly, the order of the transition seems to be different in the different quadrants. The
evidence suggests that the transition is second order in the third quadrant and higher than
second order in the first quadrant.

4.2.3. The collapse problem. Kantor and coworkers [34, 63] have investigated a model
of random copolymer collapse using a combination of exact enumeration and Monte Carlo
techniques. The polymer is represented as a self-avoiding walk on a lattice in two [34] or
three dimensions [63] and the monomer sequence is random with the probability that a given
monomer is A being p, and B being 1 − p. We write χi = 1 if the ith monomer is A and −1 if
it is B. Given a monomer sequence χ = {χ0, χ1, . . . , n}, the Hamiltonian (see also section 2.3)
of a self-avoiding walk ω is

H(ω|χ) = v0

∑
i<j

χiχj�ij (4.1)

where �ij = 1 if |i − j | 	= 1 and monomers i and j are unit distance apart on the lattice (i.e.
are first neighbours on the lattice and so form a contact). Several other numerical studies of
this model have appeared [36, 83].

The behaviour seems to depend on the sign of v0. If v0 < 0 then like monomers attract
and unlike monomers repel. In this case there is a collapse transition for all proportions
of the two types of monomer [63] and this resembles the theta transition in homopolymers.
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If v0 > 0 then like monomers repel and unlike monomers attract so this corresponds to a
strongly shielded Coulomb system (so the force is short ranged). If the polymer is ‘uncharged’,
i.e. if
∑

χi

/
(n + 1) is approximately zero, there is a collapse transition [34, 36, 63, 83],

though there is some disagreement as to whether or not this is in the same universality class
as homopolymer collapse [34, 83]. If the polymer as a whole is strongly charged (i.e. if∑

χi/(n + 1) is far from zero) the repulsive interactions between the monomers which are in
excess become more important than the attractions between unlike monomers and the polymer
remains a random coil at all temperatures [34, 36, 63].

The random bond model mentioned in section 2.3 has been studied in two dimensions by
Monari et al [84] using exact enumeration and series analysis, as well as Monte Carlo methods.
The contacts between pairs of monomers can be attractive or repulsive in nature. For each
contact the (additive) contribution to the energy is chosen (independently) to be −V with
probability p and V with probability 1 − p, with V < 0. When p = 1 all the interactions are
repulsive and there is no collapse. When p = 0 we have homopolymer collapse. The authors
argue that there is a value of p (let us call it p∗) such that for p < p∗ disorder is irrelevant and
the universality class of the transition is the same as for collapse of a homopolymer, while for
p > p∗ disorder becomes relevant and the scaling exponents deviate from the homopolymer
values.

Trovato et al [123] used transfer-matrix methods to obtain a Morita approximation to
study a self-avoiding walk model of random copolymer collapse. See section 3.2.3 for a
discussion of their results.

5. Self-averaging of the free energy and other properties

Suppose that χ = {χ1, χ2, . . .} is an infinite sequence of identically and independently
distributed random variables. For instance suppose that χi is A with probability p and B
with probability 1 − p. We take the first n elements of χ, {χ1, χ2, . . . χn} and use these to
colour the vertices 1, 2, . . . , n of an n-edge walk of some class (e.g. self-avoiding). (For
many of the problems which we are considering, it is convenient to leave the zeroth vertex
uncoloured. If not, then we could let χ = {χ0, χ1, . . .} without making any essential difference
to the argument.) For whatever random copolymer problem we are considering we take a
property P whose value depends on both the colouring χ and on the degree of polymerization
n and we write the value of the property as Pn(χ). For instance, P could be the free
energy (Pn(χ) = κn(β|χ) as in (1.1)), the energy (Pn(χ) = ∂κn(β|χ)/∂β), the heat capacity
(Pn(χ) = ∂2κn(β|χ)/∂β2) or some average conformational property such as the average
radius of gyration. P depends on the set of conformations and the weighting of the elements
of the set will depend on χ and, in general, on β. If limn→∞ Pn(χ) exists and is equal to a
deterministic value independent of χ , almost surely, then we say that P self-averages. Not
all properties self-average [15, 25, 110] so the phenomenon is not trivial. It turns out to be
possible to prove that the free energy self-averages for several interesting problems and it
is not difficult to find conditions under which the energy also self-averages [99]. However,
the situation is very different for the heat capacity and for metric properties such as the
radius of gyration. There are other forms of self-averaging which merit attention [99]. For
instance, does 〈Pn(χ)2〉 − 〈Pn(χ)〉2 tend to zero as n → ∞? If so Pn(χ) self-averages
in L2.

A number of different approaches have been used to establish the self-averaging of the
free energy and we shall describe these in turn, using the same physical system (random
copolymer adsorption) as an example in each case.
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5.1. Self-averaging of the free energy in the n → ∞ limit

We first describe an idea which does not quite work, but which is the basis for a useful
method. Suppose that we have a random copolymer with n monomers. Fix χ . Write
n = mp + q, 0 � q < m, and split up the polymer into p shorter polymers each with m
monomers, and a final polymer with q monomers. One now hopes that the partition function
is multiplicative so that the partition function of the n-mer is a product of p terms, each being
the partition function for a particular m-mer, multiplied by the partition function for the q-mer.
This will not usually be true but suppose for the moment that it is. Take logarithms and divide
by n. Roughly speaking the (intensive) free energy at fixed χ for the n-mer will be the average
of the free energies of p m-mers. In fact this is the sample average for a sample of size p but
this will converge (by the strong law of large numbers) to the expected value of the (intensive)
free energy for m-mers as p → ∞. Next let m → ∞ and we have the required result.

One way to make this into a useful approach is by making use of upper and lower bounds
on the free energy. Define the partition function Zn(β|χ) and free energy κn(β|χ) as in (1.1).
Suppose we can find two related systems with partition functions Ln(β|χ) and Un(β|χ) such
that

Ln(β|χ) � Zn(β|χ) � Un(β|χ). (5.1)

Suppose also that

lim
n→∞ n−1〈log Ln(β|χ)〉 = lim

n→∞ n−1〈log Un(β|χ)〉. (5.2)

We call walks with partition function Ln(β|χ) L-walks and walks with partition function
Un(β|χ)U -walks. Write n = mp + q, 0 � q < m. Suppose that

Zn(β|χ) �
[

p∏
i=1

Lm(β|χ(i))

]
Lq(β|χ(p+1)) (5.3)

and

Zn(β|χ) �
[

p∏
i=1

Um(β|χ(i))

]
Uq(β|χ(p+1)) (5.4)

where χ(i) is the colouring of the vertices in the ith block of m vertices and χ is the concatenation
of the colourings χ(1), χ(2), . . . χ(p+1). The idea is to split the walk into p subwalks of length
m and a final subwalk of length q and then prove (5.3) and (5.4) for suitably defined sets of
L-walks and U-walks. Taking logarithms and dividing by n gives

n−1 log Zn(β|χ) �
[

1

(p + q/m)

p∑
i=1

m−1 log Lm(β|χ(i))

]
+ n−1 log Lq(β|χ(p+1)). (5.5)

Now p−1∑p

i=1 m−1 log Lm(β|χ(i)) converges almost surely to 〈m−1 log Lm(β|χ)〉 as p → ∞,
by the strong law of large numbers (see for instance [86]). Hence

lim inf
n→∞ n−1 log Zn(β|χ) � 〈m−1 log Lm(β|χ)〉 (5.6)

almost surely for any fixed m. Similar arguments based on (5.4) show that

lim sup
n→∞

n−1 log Zn(β|χ) � 〈m−1 log Um(β|χ)〉 (5.7)

almost surely. It only remains to let m → ∞ and then to use (5.2) to prove self-averaging
in the almost sure sense. This idea of splitting up the system into smaller subsystems and
using bounds was used in an Ising problem [47] and has been used for the random copolymer
adsorption problem [97].
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A related idea (see for instance [28, 98]) is to derive a subadditive or superadditive
inequality and then to use an ergodic theorem for subadditive or superadditive processes
[1, 65, 66]. Suppose that the partition function Zn(β|χ) satisfies the following conditions:

(i) Zm(β|χ(1))Zn(β|χ(2)) � Zm+n(β|χ) where χ is the concatenation of the colourings χ(1)

and χ(2).

(ii) n−1 log Zn(β|χ) � M(β) < ∞ for all finite n.

Then log Zn(β|χ) is a discrete superadditive process and the limit

lim
n→∞ n−1 log Zn(β|χ) ≡ η(β|χ) (5.8)

exists for almost all χ [1]. Moreover

η(β|χ) = lim
n→∞ n−1〈log Zn(β|χ)〉 (5.9)

for almost all χ [1, 98].
As a simple example of the application of this method consider randomly coloured

Motzkin paths where we count the number of visits to the x-axis. The vertices of the Motzkin
path with n edges are numbered i = 0, 1, 2, . . . , n. Vertices 1, 2, . . . , n are uniformly and
independently coloured A or B, so that each vertex is A with probability p and B with probability
1 − p. We write χi = A or B according to the colouring of the ith vertex, and we write χ as
a shorthand for {χ1, χ2, . . . χn}. Let bn(vA|χ) be the number of n-edge Motzkin paths with
colouring χ , having vA vertices coloured A in the line y = 0. Then by concatenation of two
Motzkin paths (to give a third Motzkin path) we have the inequality

bn(vA|χ) �
∑

u

bm(u|χ(1))bn−m(vA − u|χ(2)). (5.10)

If we define the partition function

Zn(β|χ) =
∑
vA

bn(vA|χ) eβvA (5.11)

it follows immediately that

Zm(β|χ(1))Zn(β|χ(2)) � Zm+n(β|χ). (5.12)

Clearly Zn(β|χ) � max[3n, 3n eβn] so both conditions are satisfied for log Zn(β|χ) to be
a discrete superadditive process and self-averaging (in the almost sure sense) follows from
application of the superadditive ergodic theorem. Extensions of this approach have been used
to prove that the free energy of randomly coloured self-interacting polygons self-averages [58],
that the free energy of homopolymers interacting with a randomly heterogeneous surface self-
averages [128] and that the free energy of a lattice tree model of branched random copolymer
adsorption self-averages [130].

The fact that the free energy self-averages almost surely means that for almost any
randomly chosen sequence of colours the free energy converges to a limit independent of
the chosen sequence. This result says nothing about how to choose a sequence of colours,
guaranteeing that the limit for that particular sequence will be the quenched average free
energy. The question of finding such self-averaging sequences was investigated in [59]. These
sequences are connected to normal numbers and [59] gives an alternative (and constructive)
proof of self-averaging.
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5.2. Extent of self-averaging of the free energy for finite n

Once we have established that the free energy self-averages in the n → ∞ limit it is natural
to ask for the extent of self-averaging at finite values of n. That is, how large does n have to
be before the system is self-averaging to a certain degree of approximation? Or, how narrow
is the distribution of the values of κn(β|χ) when n is finite, and how does this width change
as n increases? Let’s first see what we might hope to establish.

If, when the system was split into subsystems as outlined at the begining of section 5.1,
the partition function factored into a product of partition functions for the subsystems, the free
energy would be an average of a set of independent random variables from the same distribution
and we would have a central limit theorem. In practice we do not get independence and we
perhaps should not expect to be able to prove a central limit theorem. However, it would be
reasonable to expect that there would exist positive constants A and γ such that

|κn(β|χ) − 〈κn(β|χ)〉| � An−γ (5.13)

with high probability when n is large. One might expect that γ would be 1/2 − ε for any
ε > 0.

The first step in this direction seems to be a result [53] for the self-avoiding walk model
of random copolymer adsorption (see section 2.1 for details of the model and for definitions
and notation). The primary result is a proof that for any finite α and any ε > 0 there exists a
constant K = K(α) < ∞ such that

|κn(α|χ) − 〈κn(α|χ)〉| � O(n−1/4+ε) (5.14)

with probability at least 1−2K/�√n�. This is essentially (5.13) with γ = 1/4 − ε. The proof
uses the upper and lower bound argument described in section 5.1, coupled with Chebyshev’s
inequality (see for instance [86]).

This result was improved and generalized in [74]. The key idea in this paper is to look at
conditional expectations such as

Mk = E[κn(β|χ1, χ2, . . . χn)|χ1, . . . χk] (5.15)

in which the free energy is averaged over colours χk+1, χk+2, . . . χn with colours χ1, χ2, . . . χk

fixed. Notice that

M0 = E[κn(β|χ1, χ2, . . . χn)] = 〈κn(β|χ1, χ2, . . . χn)〉 (5.16)

is the quenched average free energy and that

Mn − M0 = κn(β|χ) − 〈κn(β|χ)〉. (5.17)

The authors use Martingale methods [4, 40, 113, 118] to show that, under a certain condition
which we shall explain below,

Pr(|κn(β|χ) − 〈κn(β|χ)〉| � Bn−1/2+ε) � 2 e−(B2/2β2)n2ε

(5.18)

for any positive constants B and ε. The required condition is not very severe. Suppose that χ ′

is the colouring obtained from χ by changing the colour at a single vertex. Then the condition
is that

|κn(β|χ) − κn(β|χ ′)| � K(β)/n (5.19)

where K(β) is finite and independent of n. This condition can be established [74] for a
number of the models which we have discussed and gives a strong bound on the extent of
self-averaging of the free energy at finite n.



Topical Review R319

5.3. Self-averaging of other thermodynamic properties

Most of the results which have been proved for self-averaging are for the free energy. Self-
averaging of other quantities such as the energy, the heat capacity and average conformational
properties such as the radius of gyration have been investigated numerically [19, 80] but little
is known rigorously.

In fact it is not too difficult to establish conditions under which the energy self-averages
[99]. Defining the free energy as in (1.1), we can define the energy as

Un(β|χ) = ∂κn(β|χ)/∂β. (5.20)

Suppose that

(i) κn(β|χ) is a convex function of β for β < ∞.
(ii) κn(β|χ) converges almost surely in χ to κ̄(β) as n → ∞.

It follows immediately that κ̄(β) = limn→∞〈κn(β|χ)〉 is a convex function of β and it is
clearly non-decreasing in β. In particular κ̄(β) is differentiable for almost all β. Convexity
means that we can switch the order of the limit and the derivative so Un(β|χ) converges almost
surely to the derivative of κ̄(β) for every β at which the derivative exists. Defining

Ū (β) = ∂κ̄(β)/∂β (5.21)

whenever κ̄(β) is differentiable, we see that Un(β|χ) converges almost surely in χ to Ū (β)

for almost all β. Provided that the energy is bounded above it also converges in Lp for
1 � p < ∞.

In the case of the heat capacity the situation is more difficult. The above argument for
the self-averaging of the energy relied on the convexity of the free energy. If the energy is
comprised of a set of convex and concave pieces then the above argument can be used for each
individual piece. Can we find less restrictive conditions? Orlandini et al [99] have investigated
this question. Define the heat capacity

Cn(β|χ) = ∂Un(β|χ)

∂β
= ∂2κ(β|χ)

∂β2
(5.22)

and define an interval B = [β1, β2]. Suppose that Ū (β) is absolutely continuous for β ∈ B.
This is a mild assumption since it says that (i) Ū (β) is differentiable almost everywhere in B,
(ii) the derivative ∂Ū(β)/∂β is integrable and (iii) the fundamental theorem of calculus holds.
Suppose also that Cn(β|χ) � P(β) < ∞ for some P(β) which is independent of n. These
conditions are enough to ensure that 〈Cn(β|χ)〉 converges to C̄(β) ≡ ∂2κ̄(β)/∂β2, that is they
imply convergence of mean values for the heat capacity.

If we make the further assumption that either infn Cn(β|χ) � C̄(β) or that
supn Cn(β|χ) � C̄(β) for almost all χ , then it is possible to prove that Cn(β|χ) converges to
C̄(β) in the Lp sense for 1 � p < ∞, for almost all β ∈ B. This is not enough to ensure
convergence for almost all χ . This final assumption is very strong and is difficult to check, but
it can be checked for random copolymer adsorption in the high temperature (desorbed) phase
[99], so that we do know that the heat capacity self-averages in L2 for this problem. Clearly
much more work is needed to understand self-averaging of the heat capacity for random
copolymer problems.

Nothing is known rigorously about self-averaging of average conformational properties
like the radius of gyration. In the next section we shall discuss the numerical evidence for
self-averaging.
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5.4. Numerical studies of the extent of self-averaging

There have been a number of numerical studies of self-averaging in random copolymers using
both exact enumeration [19] and Monte Carlo methods [80].

As pointed out by Chuang et al [19] proteins are mesoscopic objects and in [19] the extent
of self-averaging at degrees of polymerization relevant to proteins is studied. Self-averaging is
often assumed in sequence design studies and Chuang et al set out to test this assumption. Of
course, the results described in section 5.2 give some information about this question. Chuang
et al considered a lattice model with monomers at lattice points, with a pairwise additive
potential between pairs of occupied lattice points which are neighbours on the lattice. Two
kinds of monomers were considered and these were distributed independently but conditioned
to have the same number of monomers of each type in every realization. The value of the
pairwise additive contribution from a particular pair of monomers depended on the nature of
the two monomers. They carried out an exact enumeration of all compact conformations for
several chain lengths and examined a large sample of random sequences of monomers. They
calculated the energy in each compact conformation for a particular monomer sequence and
derived the free energy for the fixed monomer sequence.

In our notation they used the quantity

�n = 〈κn(β|χ)2〉 − 〈κn(β|χ)〉2

〈κn(β|χ)〉2
(5.23)

(related to self-averaging in L2) to characterize the extent of self-averaging of the free energy
at degree of polymerization n. They found that �n decreases as n increases and that the rate
of decrease is larger at higher temperatures. One would expect that �n would decrease like
n−1 and they found evidence for this, with some deviations at small n.

Moghaddam [80] used Monte Carlo methods to look at self-averaging of the energy,
the heat capacity and an averaged metric property for a self-avoiding walk model of random
copolymer adsorption at a homogeneous surface (see section 2.1) and a self-avoiding walk
model of adsorption of a homopolymer at a randomly heterogeneous surface. To examine the
energy the author estimated the variance (with respect to the distribution over χ ) of vA(α|χ)/n

(where vA(α|χ) is the mean number of A-vertices in the surface at fixed α and χ ) as a function
of n and the energy parameter α. At small α the variance is extremely small even for values
of n as low as 100, consistent with rapid self-averaging. At larger values of α, i.e. at lower
temperatures, there is still clear evidence that the variance is going to zero as n → ∞ but
the variance is considerably larger at small values of n. For the heat capacity the situation
is less clear but points to relatively rapid self-averaging away from the phase transition, with
slower self-averaging near the transition. The only metric property investigated was the mean
distance of vertices from the surface 〈z〉. The variance of 〈z〉 is larger at larger values of α

(low temperatures) but there is evidence of self-averaging away from the transition. Close to
the transition the situation is unclear.

6. Conclusions and outlook

The statistical mechanics of random copolymers is a vibrant and rapidly moving area. There
have been major advances in our understanding in the last seven or eight years, especially in
terms of rigorous treatment of simple models. Quite a lot can now be said rigorously about
adsorption and localization of random copolymers but the phenomenon of collapse is less well
understood. There still seem to be no models where the quenched average free energy can
be calculated exactly, although a considerable amount of qualitative information is available
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about, for instance, the phase boundaries in models of localization. However, the field is still
full of challenging open questions.

Because of the difficulty of giving complete rigorous solutions there is considerable scope
for approximation methods and for numerical approaches. We have discussed the Morita
approximation in some detail since this seems to be a very useful approach, especially since it
gives a bound on the quenched average free energy. Numerical methods have played a major
part in supplying information about these quenched random systems and we expect that much
can still be learned from a judicious application of the powerful numerical techniques which
are available.
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[68] Kremer K, Baumgärtner A and Binder K 1981 Collapse transition and crossover scaling for self-avoiding

walks on the diamond lattice J. Phys. A: Math. Gen. 15 2879–97
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